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Abstract. The book presents a theory of boundedly rational reasoning about

dynamic economic systems. The theory is inspired by the literature on qual-

itative physics (Bobrow 1984), but it adds new developments. The aim is a

formal reconstruction of verbal qualitative reasoning about economic dynamics.

Hume’s specie-flow mechanism and Hawtrey’s monetary business cycle provide

illustrative examples.

A formal definition of a qualitative dynamic system is given. It involves

variables with only finitely many values like “high” and “low”. The movement

of variables in time is described by “tendencies” with only three possible values,

+ (increasing), 0 (steady) and − (decreasing). Algebraic relationships connect

tendencies to variables and other tendencies. Another system part is the “pri-

ority assignment” which ranks causal reasons for a transition to a new state.

A qualitative dynamic system permits only finitely many states. A transi-

tion from one state to the next involves a chain of causal reasoning formalized as

a “readjustment process”. The properties of this centrally important algorithm

are discussed in detail.

A definition of stability in a qualitative dynamic system is presented. The

stationary state is stable in Hume’s specie-flow mechanism and instable in

Hawtrey’s business cycle.
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CHAPTER 1

Introduction

The purpose of this book is a formal reconstruction of the style of verbal rea-

soning found in the older business cycle literature. This kind of thinking is best

exemplified by the famous volume on “prosperity and depression” by von Haberler

(1937). Undoubtedly, verbal business cycle theory reached a point of culmination

with von Haberler’s overview and synthesis.

It is the opinion of the author of this book, that the old style of verbal reason-

ing about economic dynamics is not just an inferior version of modern quantitative

modelling and analysis, but something entirely different, which merits to be stud-

ied in detail. It seems to be worthwhile to reconstruct the mental model (in

the sense of Johnson Laird or Gentner) and the heuristic principles of analysis

underlying pre-mathematical business cycle theory.

This book presents a reconstruction which takes the form of an algorithmic

theory. However it is not claimed that this theory adequately reflects reality.

This may or may not be the case. The theory is proposed as a formalization of

boundedly rational causal reasoning about economic dynamics. It is meant to be

a contribution to the emerging field of bounded rationality. However, this does

not exclude the possibility, that it may be useful as a tool of analysis.

The reconstruction proposed here is inspired by a book edited by Bobrow

(1984) on “qualitative reasoning about physical systems”. The author of this

book found the articles of de Kleer and Brown and of Kuipers (both in Bobrow

(1984)) most helpful for his own thinking. However it turned out to be necessary

to add further ideas and to put them into a new framework.

What is qualitative reasoning? Consider a statement of the following kind:

“an increase of x causes an increase of y” or “an increase of x causes a decrease

of y”. Such statements are “qualitative” in the sense that they assert causal

connections between directions of change. Nothing is said about the strength of

the effect. Qualitative reasoning can be roughly described as reaching qualitative

conclusions directly from qualitative assumptions.

The way in which the term is understood in this book emphasizes the word

“directly”. One can reach some qualitative conclusions from qualitative assump-

tions by rigorous arguments based on continuity and differentiability requirements

imposed on the underlying quantitative system. This is definitely not the aim of

1



2 INTRODUCTION

this book. Qualitative reasoning as it is understood here avoids the intermediate

step of arguing about quantitative models. Instead of this it is guided by heuris-

tic principles which are applied directly without questioning their quantitative

validity.

In the literature on qualitative reasoning and related subjects (e.g. Fishwick

and Luker (1991), Faltings and Struss (1992), Kuipers (1994)) the term is not

always used in the same way as here. There are many different approaches to the

subject matter. No attempt will be made to provide an overview.

The theory developed here is based on a precise definition of a qualitative dy-

namic system and an algorithm for drawing conclusions about how such systems

develop over time. Pre-mathematical reasoning about economic dynamics is re-

constructed as a mathematical formalism. At some points it will be necessary to

supply proofs.

An introduction ordinarily gives a preview of the results. However, an informal

description of the content would not be informative for most of the readers who

must be expected to be totally unfamiliar with the subject matter. Therefore a

preview of the results will not be given here.

The second chapter explains some basic concepts and provides illustrative ex-

amples. It begins with the description of a qualitative model of Hume’s specie

flow mechanism. This model is extremely simple and therefore is well suited for

providing a first impression of the approach developed here. However, most of the

basic concepts of the theory proposed here cannot be explained with the help of

the model for Hume’s specie flow mechanism. Therefore a very simple business

cycle model will be used as an expositionary device. Later a modification of this

model will also be looked upon.

Hawtrey’s business cycle theory as described by von Haberler (1937) will not

be discussed in the first chapter, but only in chapter 7 of this book, after the

instruments for modeling qualitative dynamic systems and the methods for an-

alyzing them will have been fully explained. The simple business cycle models

introduced for expositionary purposes are unrelated to Hawtrey’s theory.

Chapter 9 will discuss the question how the theory developed here relates to

some other approaches to qualitative reasoning about dynamic systems. Chapter

10 will present some concluding remarks.



CHAPTER 2

Basic concepts and illustrative examples

2.1. Hume’s specie-flow mechanism

Qualitative reasoning deals with qualitative variables. A qualitative vari-

able can only take a finite number of values. These values are ranges like “low”

or “high” or border points of such ranges like “capacity limit” in the case of pro-

duction. The tendency of a variable is its direction of change. A tendency can

take only three values: − (decreasing), 0 (steady) or + (increasing).

A confluence is the qualitative analogue of a differential equation. Each

tendency has its confluence. The tendency is on the left hand side and the right

hand side connects it to other tendencies and to values of qualitative variables.

In order to illustrate the concept of a confluence we shall explain how Hume’s

famous specie-flow mechanism (Hume (1752)) can be described by a system of

confluences. Hume looks at an open economy in which most commodities are non-

traded. Therefore domestic prices can be different from world market prices. The

economy is assumed to be small in the sense that it does not have any influence on

world market prices. Assume that trade is balanced and that there is a temporary

exogenous inflow of gold. Then domestic demand is increased, domestic prices rise,

imports go up and exports go down and this results in a trade deficit. As long

as the trade deficit persists, gold flows out of the country until trade is balanced

again. The case of a temporary outflow of gold is analogous.

It is now necessary to introduce some notations. Variables are represented by

strings of capital letters.

TR trade balance

this variable can take the values

D deficit

b balanced

S surplus

GO gold, the total amount of gold in the country

DE domestic demand

PR prices

EX exports

IM imports

3



4 2. BASIC CONCEPTS AND ILLUSTRATIVE EXAMPLES

The trade balance TR is the only variable which can take more than one value.

Such variables are called scaled, since the values of a scaled variable form a scale

like D, b, S in the case of TR. The scale lists the values in algebraically increasing

order from left to right. Variables with only one possible value are called unscaled.

If XY is a variable, then ∂XY denotes the tendency of XY . The use of the

symbol “∂” reminds us of the interpretation of a tendency as the sign of a time

derivative. The system of confluences for Hume’s specie-flow mechanism is as

follows:

∂GO = f(TR) =















− for TR = D

0 for TR = b

+ for TR = S

∂DE = ∂GO

∂PR = ∂DE

∂IM = ∂PR

∂EX = −∂PR

∂TR = ∂EX − ∂IM

The interpretation of the first four confluences is straightforward, but the last two

require some algebra of directions. A direction is one of the possible values −, 0

or + of a tendency. If d is a direction then −d is defined as follows.

−d =















+ for d = −

0 for d = 0

− for d = +

The confluence for ∂TR requires that ∂TR is the sum of ∂EX and −∂IM . Con-

sider the sum Z = d1 + d2 of two directions d1 and d2. The interpretation of

this sum will now be discussed. Consider a functional relationship between three

quantitative variables x, y, z:

z = f(x, y)

Let ẋ, ẏ, ż be the time derivatives of x, y, and z. Then we have

ż =
∂f(x, y)

∂x
ẋ+

∂f(x, y)

∂y
ẏ

Suppose that d1 is the sign of ẋ and d2 is the sign of ẏ. Moreover, assume that the

partial derivatives ∂f(x, y)/∂x and ∂f(x, y)/∂y are positive. Then d1 + d2 is the

direction of ż. If, for example ∂f(x, y)/∂x is positive and ∂f(x, y)/∂y is negative,

then the direction of ż is d1 − d2. Algebraic sums of directions like d1 − d2 are

interpreted in this way.
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Of course, if one of the directions in the sum d1 + d2 is positive and the other

one negative, nothing can be said about the tendency of the sum. This is expressed

by Z = {−, 0,+}. Table 1 shows the sum Z of two directions d1 and d2.

d2

− 0 +

− − − {−, 0,+}

d1 0 − 0 +

+ {−, 0,+} + +

Table 1. The sum Z = d1 + d2 of two directions d1 and d2

A graphical representation of the model is shown by Figure 1.

PRICES

DOMESTIC
DEMAND

GOLD

TRADE
BALANCE
D b S

IMPORTS EXPORTS

D : −

f(TR) b : 0

S : +

+

+

+

−

−

+

Figure 1. Hume’s specie-flow mechanism

The variables appear in rectangles and the causal influences expressed by the

confluences are shown by connecting lines with arrows indicating the direction of

causation. A “+” or a “−” at such a line shows whether the influence is positive

or negative. It may happen, however, that the sign of an influence depends on

values of variables as in the case of the confluence for ∂GO.
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In the model of Hume’s specie-flow mechanism −∂EX and ∂IM are both equal

to ∂PR. Therefore we have

∂TR = ∂EX − ∂IM

= −∂PR − ∂PR

= −∂PR

= −∂DE

= −∂GO

= −f(TR).

The value of TR unambiguously determines ∂TR.

2.2. States and transition diagram

For a given specification of all values of variables the right hand side of a

confluence will in general be a set of directions. A confluence is satisfied if the

tendency on the left hand side is an element of this set. Of course, in special cases

the right hand side is a single direction and then a confluence is satisfied if both

sides are equal.

For the sake of simplicity no distinction is made between a set with only one

element and this element. Admittedly in confluences the equality sign does not

really have the meaning of asserting equality, but rather that of the set theoretic

sign ∈. Therefore left and right hand sides cannot be interchanged. Once this is

understood, no misunderstandings can arise from the usual notational conventions

concerning confluences.

A state of a system of confluences is a specification of the values of all scaled

variables and of the tendencies of all variables, such that all confluences are satis-

fied. This definition of a state is preliminary. Later it will have to be a adjusted

to more complex systems. The final definition of a state will be given at the end

of Section 2.7. The model for Hume’s specie-flow mechanism has exactly three

states since all tendencies are uniquely determined by the value of TR.

state TR ∂TR

1 D +

2 b 0

3 S −

If the system is in state 1 then the trade balance will improve in view of

∂TR = + until trade becomes balanced. Therefore state 2 will be reached from
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state 1. Analogously state 3 leads to the state 2, too. Figure 2 describes these

conclusions in the form of a transition diagram.

state 1
TR = D

state 2
TR = b

state 3
TR = S

Figure 2. The transition diagram for Hume’s specie-flow mechanism

Of course, the argument about the transitions from states 1 and 3 to state 2 is

heuristic rather than exact. A decreasing positive variable may never reach zero,

since it may converge to a positive asymptote. Such possibilities are ignored by

qualitative reasoning in the sense in which the term is used in this book. However

this should not be considered to be a mistake, but rather an implicit assumption

about the underlying quantitative system.

It can be seen that state 2 is stable by any reasonable definition of the term.

A small disturbance may move the system temporarily to state 1 or state 3, but

from there it must return to state 2.

The model of Hume’s specie-flow mechanism is exceptionally simple. It is easy

to construct a transition diagram and to investigate the stability of the stationary

state. It is much more difficult to develop a general method for solving the same

problems for a broad class of qualitative dynamic systems.

2.3. Boundary restrictions

The notion of a confluence is common to most of the literature on qualitative

reasoning. However, the adequate representation of verbal business cycle theories

seems to require additional conceptual instruments. Therefore the theory proposed

here makes use of a restriction concept.

Consider a qualitative variable “production” denoted by PD with the scale

b, L, n,H, c.We think of production as the total output of an economy. The symbol

b denotes a lower limit, below which production cannot fall for technological or

social reasons. L and H stand for ranges of low and high production, n (normal)

is the border point between L and H and c is the capacity limit.

On a scale points like b, n, c alternate with ranges like L and H . Ranges

are interpreted as open intervals of an underlying quantity and points as border

points of such intervals. We use capital letters for ranges and lower case letters

for points. A scale has a bottom value at its lower end and a top value at its

upper end. If the bottom value is a point it is called a bottom point. Similarly

a top point is a top value which is a point. However, top or bottom values may

also be ranges. In this case we speak of top ranges and bottom ranges. A
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scaled variable with a top point or a bottom point is called bounded. This is

suggested by the idea that an underlying quantitative variable would have to be

bounded from below or above.

At the capacity limit c production cannot be further increased. Therefore at c

the tendency ∂PD must be in {−, 0}. This set is the boundary restriction of ∂PD

at c. Similarly {0,+} is the boundary restriction of ∂PD at b. At L, n, and H

the tendency ∂PD is not constrained by a boundary restriction. This is expressed

by saying that there the boundary restriction is the set {−, 0,+} of all possible

directions.

The symbol ⊲ followed by the name of the variable denotes the boundary

restriction of this variable. Let XY be a scaled variable: Then we have

⊲XY =















{−, 0} for the top point of XY , if XY has one

{0,+} for the bottom point of XY , if XY has one

{−, 0,+} else.

The boundary restriction of a tendency may appear in its confluence. In order

to explain this in detail we need some explanations about the algebra of convex

direction sets which will follow in the next section.

2.4. The algebra of convex direction sets

A direction set is a non-empty subset of {−, 0,+}. We call {−, 0,+} the

full direction set. A convex direction set is characterized by the condition that

zero must be in it if + and − belong to it. The direction set {−,+} is the only

one excluded by this definition. For the sake of simplicity we make no distinction

between a direction and the convex direction set containing this direction as its

only element. There are altogether 6 convex direction sets: −, 0,+, {−, 0}, {0,+},

and {−, 0,+}.

We now extend the definition of a sum to convex direction sets. Let S1, ..., Sn

be convex direction sets. Then the sum

S = S1 + ... + Sn

of these sets is defined as follows:

S contains − if and only if − is in one of the sets S1, ..., Sn

S contains + if and only if + is in one of the sets S1, ..., Sn

S contains 0 if and only if − and + belong to S or 0 be-
longs to each of the sets S1, ..., Sn
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In an algebraic sum some components may appear with a negative sign. The

subtraction of Si is defined as the addition of −Si. A direction d belongs to −Si

if and only if −d belongs to Si.

The sum of two convex direction sets is shown by Table 2. The interpretation

of a sum of convex direction sets is similar to that of a sum of directions. One

thinks of each of the Sk with k = 1, ..., n as connected to an underlying quantity

whose tendency is in Sk. The sum S is the set of all possible tendencies of the

sum of the time derivatives of these quantities multiplied with the relevant partial

derivatives (see 2.1).

S2

− 0 + {−, 0} {0,+} {−, 0,+}

S1

− − − {−, 0,+} − {−, 0,+} {−, 0,+}

0 − 0 + {−, 0} {0,+} {−, 0,+}

+ {−, 0,+} + + {−, 0,+} + {−, 0,+}

{−, 0} − {−, 0} {−, 0,+} {−, 0} {−, 0,+} {−, 0,+}

{0,+} {−, 0,+} {0,+} + {−, 0,+} {0,+} {−, 0,+}

{−, 0,+} {−, 0,+} {−, 0,+} {−, 0,+} {−, 0,+} {−, 0,+} {−, 0,+}

Table 2. The sum S of two convex direction sets S1 and S2

It can be seen without difficulty that the addition of convex direction sets is

commutative and associative. Moreover, it is clear that a sum of convex direction

sets is a convex direction set. Zero belongs to it if + and − are in it.

A direction sum is a direction set which can be obtained as the sum of

directions. Let d1, ..., dn be directions. Consider the sum

D = d1 + ... + dn

Obviously the directions −, 0,+ are direction sums, {−, 0,+} is the sum of −

and + and therefore is a direction sum, too. However the remaining two convex

direction sets {−, 0} and {0,+} fail to be direction sums. Zero can be in D if a

+ and a − is among the dk but in this case D equals {−, 0,+}. Otherwise zero

can be in D only if all dk are equal to zero, but then D is zero. Therefore −, 0,+

and {−, 0,+} are the only direction sums.

The notion of a direction sum is important for the structure of confluences. A

confluence for a tendency represents the combined influences of other variables by

an algebraic sum of other tendencies, maybe augmented by a constant direction.

This expression on the right hand side is the main term of the confluence. The

main term may depend on values of scaled variables but for given values of all
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scaled variables it has this structure. Therefore at a state the value of a main

term must be a direction sum.

It may happen, however, that a tendency is subject to a boundary restriction.

In this case the main term must be modified in order to take account of the

restriction. If the intersection of the main term with the restriction is non-empty

then this intersection is the value of the right hand side. However this is different,

if the intersection is empty.

It is useful to look at an example. Suppose that production is represented

by the variable PD with the scale b, L, n,H, c. Assume that usually production

quickly adjusts to real effective demand, an unscaled variable DE. This means

that ∂PD = ∂DE holds unless the boundary condition ⊲PD is binding.

Consider the case ∂DE = + and PD = c. In this case we have ⊲PD =

{−, 0}. Rising demand pushes production up, but the capacity limit stops its

upward movement, like the rise of a gas filled toy balloon is stopped by the ceiling.

Therefore we have ∂PD = 0 for ∂DE = + and PD = c. This is formally

described by the operation of accomodation expressed by the symbol @. Let d

be a direction and let R be a convex direction set. d@ R, read as “d accommodated

to R”, is the element of R nearest to d in the following sense: + and − are nearer

to 0 than to each other. Of course, d is nearer to itself than to any other direction.

In the same way as a direction d, a convex direction set S can be accommodated

to a convex direction set R. The expression S @ R is defined as follows

S @ R =



























S ∩ R if S ∩R 6= ∅

R if R contains only one element

0 if S = − and R = {0,+}

0 if S = + and R = {−, 0}

Table 3 shows S @ R for any two convex direction sets R and S.

R

− 0 + {−, 0} {0,+} {−, 0,+}

S

− − 0 + − 0 −

0 − 0 + 0 0 0

+ − 0 + 0 + +

{−, 0} − 0 + {−, 0} 0 {−, 0}

{0,+} − 0 + 0 {0,+} {0,+}

{−, 0,+} − 0 + {−, 0} {0,+} {−, 0,+}

Table 3. The value of S @ R for two convex direction sets S and R
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With the help of the accommodation operation the relationship between ∂PD

and ∂DE assumed above can now be expressed as follows

∂PD = ∂DE @ ⊲ PD.

In this way the main term of a confluence for the tendency of a scaled variable

with a top point or a bottom point is accommodated to the boundary restriction

of the tendency.

2.5. System specific restrictions and restriction equations

Boundary restrictions are a simple consequence of the scale of the concerning

variable. They are independent of other aspects of the specific system. However,

a tendency may be restricted in another way which needs to be modeled explicitly.

This will lead us to system specific restrictions and restriction equations. These

concepts will be explained in the context of a very simple business cycle model. In

fact this model is too simple to be taken seriously, but it is useful as an expositional

device.

In addition to the variable PD, production, with the scale b, L, n, H, c the

model contains the unscaled variables DE, real effective demand and IN , the rate

of inflation. It is assumed that above the “normal” level n of PD an overuse of

productive resources results in increasing inflation. Similarly the inflation rate

decreases below n. Only at n it is steady. This leads to the following confluence

for ∂IN :

∂IN =















− for PD = b, L

0 for PD = n

+ for PD = H, c

The confluence for ∂DE is based on the idea that real income and therefore real

effective demand are positively influenced by production. Ceteris paribus a rising

rate of inflation decreases real income and thereby real effective demand. This

leads to the main term ∂PD − ∂IN in the confluence for ∂DE. This main term

is accommodated to a system specific restriction �DE

∂DE = (∂PD − ∂IN) @ �DE

The symbol � is used analogously to ⊲. A system specific restriction is denoted

by � followed by the name of the variable whose tendency is restricted. System

specific restrictions need to be modeled explicitly by restriction equations. The

restriction equation for �DE is very simple

�DE = ⊲PD
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It is assumed that inventories serve transactional purposes only and therefore

are kept constant. Accordingly effective demand cannot grow any more once the

capacity limit has been reached. At the lower bound b of production DE cannot

fall since always the whole production will be sold, if necessary at sufficiently low

prices. Usually production follows effective demand, but the boundary restriction

⊲PD may constrain it. As in 2.3 we have:

∂PD = ∂DE @ ⊲ PD

Table 4 summarizes the simple business cycle model.

Variables

PD production, scale b, L, n,H, c

IN rate of inflation, unscaled

DE real effective demand, unscaled

Confluences

∂PD = ∂DE @ ⊲ PD

∂IN =











− for PD = b, L

0 for PD = n

+ for PD = H, c

∂DE = (∂PD − ∂IN) @ �DE

Restriction equation

�DE = ⊲PD

Table 4. A simple business cycle model

As has been explained before, a confluence is satisfied, if the left hand side is

an element of the right hand side. However, a restriction equation is satisfied, if

the sets on the left hand side and the right hand side are equal.

A preliminary definition of a state has been presented in Section 2.2. This

definition must be adjusted to the presence of system specific restrictions. A state

is a specification of values for all scaled variables, for the tendencies of all variables

and for all system specific restrictions, such that all confluences and restriction

equations are satisfied. The value of a scaled variable is on its scale, the values of

tendencies are directions and the values of system specific restrictions are convex

direction sets. This definition of a state is still preliminary. The final definition

will be given at the end of Section 2.7.
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The structure of the right hand side of a restriction equation may be more

complex than in our example. There is always a main term S which is a sum of

convex direction sets which may involve tendencies or restrictions of other variables

or constant direction sets. In the case of a bounded variable (a scaled variable with

a bottom point or a top point, see 2.3) the main term S must be accommodated

to the boundary restriction:

�XY = S @ ⊲XY

The main term may depend on values of variables, but if they are given, it is a

sum of convex direction sets as described above.

2.6. States and cycle of the simple model of Table 4

We continue to look at the simple business cycle model of Table 4. This model

has only 9 states. They are listed in Table 5. State 9 is the only one with ∂PD = 0.

This can be seen as follows. If ∂PD is zero then it follows by the confluences for

∂DE and ∂IN that we have

∂PD =















+ for PD = b, L

0 for PD = n

− for PD = H, c

This shows that ∂PD = 0 can hold only at PD = n. All confluences are satisfied

for PD = n and

∂PD = ∂IN = ∂DE = 0

Everywhere else we must have ∂PD = − or ∂PD = +. Therefore at PD = b we

must have ∂PD = + in view of ⊲PD = {0,+} and at PD = c we must have

∂PD = − in view of ⊲PD = {−, 0}. This means that state 1 is the only one with

PD = b and state 5 is the only one with PD = c. It follows by the confluence for

∂PD that we always have

∂PD = ∂DE

For PD = L, n,H the value of ∂PD can be + or −. This leads to states 2, 3, 4

and 6, 7, 8 respectively. This shows that there cannot be any other states than

those listed in Table 5 and at each of these states all confluences are satisfied.

The question arises how the system moves from one state to the other. At the

moment we can only give a preliminary answer. We proceed from the heuristic

principle that no more is changed in the transition than is necessary. In the case

of the confluences for the model of Hume’s specie-flow mechanism the state of the

system was completely determined by the value of TR. Therefore the movements

from state to state depended only on ∂TR. The situation is a little more complex

in the simple business cycle model.



14 2. BASIC CONCEPTS AND ILLUSTRATIVE EXAMPLES

state PD ⊲PD = �DE ∂PD ∂DE ∂IN

1 b {0,+} + + −

2 L {−, 0,+} + + −

3 n {−, 0,+} + + 0

4 H {−, 0,+} + + +

5 c {−, 0} − − +

6 H {−, 0,+} − − +

7 n {−, 0,+} − − 0

8 L {−, 0,+} − − −

9 n {−, 0,+} 0 0 0

Table 5. The 9 states of the simple business cycle model of Table 4

Consider state 1. There we have ∂PD = +. This means that PD moves

towards L. However, there are two states with PD = L, namely state 2 and state

8. The movement of PD from b to L alone does not determine the next state. It

is important that nothing else needs to be changed. At state 2 all tendencies have

the same value as at state 1. This is not true for state 8. Therefore the next state

after state 1 is state 2.

As we shall see later, a transition is initiated by a transition cause, in our

case by a change of the value of PD from b to L. A change of the value of a scaled

variable to the next higher or the next lower value is called a shift. No other

transition causes are considered in this section.

A shift from a point to a range is immediate in the sense that it must happen

without delay. Since ∂PD is positive at state 1, the system cannot stay there for

more than a moment. PD must move from b to L without any delay. A shift from

a range to a point is called tardy. A scaled variable may stay in a range for a

long time, even if eventually it must move to a point.

The distinction between immediate and tardy transition causes is important for

the theory proposed here. Consider a system with two scaled variables. Suppose

that an immediate shift of one of them and a tardy shift of the other one are

possible at the same state. Then the immediate shift has absolute priority. It

must happen before the tardy shift has any chance to become effective. Of course,

this situation cannot arise in the simple business cycle model. The only scaled

variable in this model is PD.

At state 2 we have PD = L and ∂PD = +. Therefore a tardy shift of PD from

L to n is a transition cause at state 2. For PD = n the value of ∂IN must change

from − to 0 in order to satisfy the confluence for ∂IN , but after this change all
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confluences are satisfied. The tardy shift from L to n leads to state 3. In the same

way an immediate shift from n to H leads from state 3 to state 4.

∂PD = + still holds at state 4. Therefore a tardy shift of PD from H to

c must take place at state 4. This transition cause must lead to state 5, since

PD = c holds at no other state.

States 1 to 8 form the cycle of the simple business cycle model. This cycle is

graphically described by Figure 3. The transitions from state 1 to state 5 form

the upswing of this cycle. The downswing from state 5 to state 8 and from there

back to state 1 is analogous to the upswing. It is not necessary to discuss this in

detail.

state 5
PD = c, ∂PD = −

state 1
PD = b, ∂PD = +

state 2
PD = L, ∂PD = +

state 3
PD = n, ∂PD = +

state 4
PD = H, ∂PD = +

state 8
PD = L, ∂PD = −

state 7
PD = n, ∂PD = −

state 6
PD = H, ∂PD = −

Figure 3. The cycle of the simple business cycle model

Transitions are initiated by transition causes, but where a transition cause

leads to is determined by a readjustment process to be explained in chapter 4.

This process is an algorithm which adjusts unsatisfied confluences and restriction

equations until a new state is reached. In this section it is not yet possible to

discuss the readjustment process. What has been said about the cycle of the simple

business cycle model was based on heuristic arguments. The general idea was that

in a transition only necessary changes should be made. However, this somewhat

imprecise “principle of minimal change” does not fully reflect the properties of the

readjustment process.

2.7. Lagged tendencies, final state definition and system base

A confluence or a restriction equation may express a dependence on the value of

a tendency in the recent past. This gives rise to the notion of a lagged tendency.
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The lag is indicated by the superscript “−”. Thus ∂XY − is the lagged tendency

of the variable XY . In order to avoid confusion, we shall speak of the tendency

∂XY as the current tendency where this is necessary. The word “tendency”

without the qualification “lagged” will refer to a current tendency. However, we

also speak of “current and lagged tendencies” instead of “current tendencies and

lagged tendencies”.

A modified version of the simple business cycle model of Table 4 shown by

Table 6 provides an example for a confluence with a lagged tendency on the right

hand side. Apart from the confluence for ∂DE the modified model agrees with

the original one. In this confluence ∂PD is replaced by ∂PD−.

Variables

PD production, scale b, L, n,H, c

IN rate of inflation, unscaled

DE real effective demand, unscaled

Lagged tendency

∂PD−

Confluences

∂PD = ∂DE @ ⊲ PD

∂IN =











− for PD = b, L

0 for PD = n

+ for PD = H, c

∂DE = (∂PD− − ∂IN) @ �DE

Restriction equation

�DE = ⊲PD

Table 6. The modified simple business cycle model

Suppose that a lagged tendency and a current tendency have different values.

If ∂XY does not change, then after a while the time when ∂XY had the lagged

value will not any more be in the recent past. This means that then ∂XY −

will have to change its value to that of the current tendency ∂XY . Such a lag

extinction is bound to happen sooner or later if the values of ∂XY − and ∂XY

are different and ∂XY does not change.

Having introduced the notion of a lagged tendency we are now ready to give

the final definition of a state. A specification of values for all scaled variables,
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for all current and lagged tendencies and for all system specific restrictions is

admissible, if the following three conditions are satisfied:

(a1) Each scaled variable has a value on its scale.

(a2) The values of current and lagged tendencies are directions.

(a3) The values of system specific restrictions are convex direction sets.

A state, is an admissible specification of values for all scaled variables, all

current and lagged tendencies and all system specific restrictions with the following

additional property:

(a4) All confluences and restriction equations are satisfied for the specified

values.

The models considered up to now have a common structure. This structure

has two parts. The first part is a list of variables Λ involving scaled variables

with their scales and unscaled variables. The number of variables in the list is

finite and not zero. The second part is a list Γ of confluences and restriction

equations. This list Γ must fit the list Γ of variables in the sense of the following

three conditions:

(b1) The list Γ contains one and only one confluence for each current tendency

for a variable in Λ.

(b2) The list Γ contains one and only one restriction equation for each system

specific restriction appearing on the right hand side of a confluence and

no other restriction equations.

(b3) All current and lagged tendencies and all boundary or system specific

restrictions appearing on the right hand side of confluences and restric-

tion equations belong to variables in Λ. Moreover only system specific

restrictions with restriction equations in Γ appear on the right hand side

of other restriction equations.

We call a pair B = (Λ,Γ) of this kind a system base or shortly a base.

However, (b1), (b2), and (b3) do not yet exhaust the description of Γ. Additional

conditions will be imposed on confluences and restriction equations and on the list

Γ as a whole. Only after this will have been done the final definition of a system

base can be given in 2.12.

A system base is not yet a full-fledged qualitative dynamic system. The defi-

nition of a qualitative dynamic system will be given at the beginning of chapter 4.

This definition involves two further parts in addition to Λ and Γ. It will become

clear in chapter 3 why the base is not yet a sufficient description of a qualitative

dynamic system.
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In Table 6 the lagged tendency ∂PD− is explicitly listed. This is not really

necessary, since the confluences and restriction equations show which lagged ten-

dencies are present. Therefore a base does not contain a separate list for lagged

tendencies. The model of Table 6 will be further examined in the next section.

2.8. States and cycle of the model of Table 6

In order to determine the states of the model of Table 6 we look at the possi-

bilities for ∂DE. The values of the right hand side of the confluence for ∂DE as

a function of ∂PD− and PD are shown by Table 7.

PD

b L n H c

∂PD−

− {0,+} {−, 0,+} − − −

0 + + 0 − −

+ + + + {−, 0,+} {−, 0}

Table 7. Values of the right hand side of the confluence for ∂DE
in the modified simple business cycle of Table 6

There are exactly 21 possibilities for triples of ∂PD−, PD and ∂DE. In view

of �DE = ⊲PD it follows by the confluence for ∂PD that we have ∂PD = ∂DE

at every state. Moreover ∂IN is determined by the value of PD. Therefore each

of the 21 triples determines exactly one state. The list of all 21 states is shown by

Table 8.

In the analysis of the model one has to deal with two kinds of transition causes:

shifts and lag extinctions. Sometimes a shift as well as a lag extinction is possible

at the same state. This happens at state 3. Here it is reasonable to give priority

to the immediate shift of PD from b to L.

A cycle of the model of Table 6 can be constructed on the basis of shifts and

lag extinctions. A shift of PD is possible for ∂PD 6= 0 and a lag extinction is

possible for ∂PD− 6= ∂PD. If the two kinds of transition causes are possible at a

state, then priority is given to immediate shifts at point values of PD and to lag

extinctions over tardy shifts at range values of PD.

It is clear that priority must be given to immediate shifts at point values, but

at range values one could consider some other priority rule. The rule chosen here

reflects the idea that the duration of a lag is short in comparison to the time for

which PD stays at a range value.

At least implicitly some assumptions on the priorities among different tran-

sition causes are made in qualitative reasoning. As we shall see, the notion of a
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state PD ∂PD− �DE ∂IN ∂DE ∂PD

1 b − {0,+} − 0 0

2 b − {0,+} − + +

3 b 0 {0,+} − + +

4 b + {0,+} − + +

5 L − {−, 0,+} − − −

6 L − {−, 0,+} − 0 0

7 L − {−, 0,+} − + +

8 L 0 {−, 0,+} − + +

9 L + {−, 0,+} − + +

10 n − {−, 0,+} 0 − −

11 n 0 {−, 0,+} 0 0 0

12 n + {−, 0,+} 0 + +

13 H − {−, 0,+} + − −

14 H 0 {−, 0,+} + − −

15 H + {−, 0,+} + − −

16 H + {−, 0,+} + 0 0

17 H + {−, 0,+} + + +

18 c − {−, 0} + − −

19 c 0 {−, 0} + − −

20 c + {−, 0} + − −

21 c + {−, 0} + 0 0

Table 8. The states of the modified simple business cycle model
of Table 6

qualitative dynamic system makes such assumptions explicit as a formal part of

the definition.

The cycle produced by shifts and lag extinctions with the priority rule described

above is shown by Figure 4. As in the case of the cycle of Figure 3 current

tendencies are not changed in the transition from one state to the next unless this

is necessary. In the transition from state 1 to state 3 the right hand side of the

confluence for ∂DE becomes positive (see Table 7). Therefore ∂DE and ∂PD

have to change from 0 to +. In the upswing on the left hand side of Figure 4 the

tendency ∂PD does not change its value + up to state 17. At state 21 it has to

change to 0 in view of the boundary restriction of ∂PD. The transition from state

21 to state 19 is analogous to that from state 1 to state 3.
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state 3
PD = b

∂PD− = 0, ∂PD = +

state 8
PD = L

∂PD− = 0, ∂PD = +

state 9
PD = L

∂PD− = +, ∂PD = +

state 12
PD = n

∂PD− = +, ∂PD = +

state 17
PD = H

∂PD− = +, ∂PD = +

state 21
PD = c

∂PD− = +, ∂PD = 0

state 19
PD = c

∂PD− = 0, ∂PD = −

state 14
PD = H

∂PD− = 0, ∂PD = −

state 13
PD = H

∂PD− = −, ∂PD = −

state 10
PD = n

∂PD− = −, ∂PD = −

state 5
PD = L

∂PD− = −, ∂PD = −

state 1
PD = b

∂PD− = −, ∂PD = 0

shift

lag
extinction

shift

shift

shift

lag extinction

shift

lag
extinction

shift

shift

shift

lag extinction

Figure 4. The cycle for the model of Table 6

In general the principle of not changing more than necessary is not sufficient

for determining a unique result of a transition. At the moment we cannot give

more than a heuristic discussion. More precise definitions will be given in the

description of the readjustment process in chapter 4.

2.9. Tendency switches

Up to now two kinds of transition causes have been considered, shifts and lag

extinctions. In this section a third category of transition causes called “tendency

switches” will be introduced. We shall first look at an example. At state 4 of the

simple business cycle of Table 4 the tendency ∂DE has the value + and the value
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of the right hand side of the confluence for ∂DE is {−, 0,+}. This means that

at state 4 the positive influence of ∂PD on ∂DE is stronger than the negative

influence of ∂IN . However, as PD approaches c this balance of forces may change.

The positive influence of ∂PD may become weaker than the negative influence of

∂IN . If this happens ∂DE changes its value from + to −. Such a movement

of a tendency from a value d1 to another value d2 in the right hand side of its

confluence is called a tendency switch or shortly a switch.

The tendency switch of ∂DE from + to − considered above leads from state

4 to state 6. There are other states with ∂DE = −, but a transition to state 6

involves a minimum of change. Of course, here too, the principle of minimal change

is not more than a heuristic argument. In the theory proposed here, a readjustment

process described in chapter 4 determines what happens, if a transition cause

becomes effective.

A tendency switch from state 4 to state 6 means that the upswing ends and is

followed by a downswing before the capacity limit is reached. In the construction

of the cycle of Figure 3 we have ignored this possibility. Priority was given to

shifts. Whether this is judged to be plausible or not is a modelling decision which

will be formally expressed by a priority ranking in chapter 3.

At state 8 a similar tendency switch from − to + leads to state 2. In this way

the downswing may end before the bottom point b is reached.

Of course a movement of a tendency from − to + must go through zero, but

it does not have to stop there for more than a moment. Therefore we think of a

tendency switch from − to + or from + to − as a single transition rather than a

sequence of two transitions.

In section 2.6 a distinction between immediate and tardy shifts has been in-

troduced. A similar distinction has to be made for tendency switches. Consider a

state s of a system base B = (Λ,Γ) and let ∂XY be a tendency of B whose value

at s is zero. Moreover assume that the right hand side of the confluence for ∂XY

has the value {−, 0,+}. In this situation the positive and negative influences on

∂XY must be exactly balanced. We think of the quantitative time derivatives

underlying the tendencies as constantly moving. Therefore, the exact balance

cannot be expected to last for more than a moment. ∂XY must change imme-

diately from zero to − or +. We refer to such changes as immediate tendency

switches. Tendency switches which are not immediate are called tardy. Tendency

switches from − to + or + to − are always tardy. A negative or positive balance

of influences on a tendency may persist for a long time.

Switches of a tendency ∂XY are also possible at a state s at which the right

hand side of the confluence for ∂XY has the value {−, 0} or {0,+}. In these cases

a switch of ∂XY may go from − or + to zero or from zero to − or +. We refer
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to such switches as restricted switches. As has been explained before (see 2.4)

the value of the main term of a confluence is a direction sum, that is, a single

direction or the full direction set. In the case of a single direction a tendency

switch is impossible. If a tendency switch of ∂XY is possible at a state s, then the

main term of the confluence for ∂XY must have the value {−, 0,+}. Moreover,

if the value of the right hand side of the confluence for ∂XY has exactly two

elements, then this value must be the value of the restriction ⊲XY or �XY of

∂XY at s. Therefore a restricted tendency switch is a switch of ∂XY within a

restriction ⊲XY or �XY .

In the theory proposed here, restricted tendency switches are always considered

to be tardy. We refer to this as the tardiness assumption about restricted

switches. As far as switches from zero to − or + are concerned, this assumption

is justified by the idea that a negative or positive balance of the influences on

∂XY within its restriction may last a long time. The situation is less simple for

restricted switches from zero to − or +. After all such switches are considered to

be immediate if they are not restricted. However, in the case of a restricted switch

the balance of the influences on the main term may be outside of the restriction,

that is, the balance may be positive if this value is {−, 0} or negative if it is

{0,+}. Obviously in these cases restricted switches must be regarded as tardy.

The tardiness assumption about restricted tendency switches amounts to the idea

that in the case of a restriction with the value {−, 0} or {0,+} the value zero of

the restricted tendency always indicates a balance of the influences on the main

term outside the value of the restriction. This is plausible, since a negative or

positive balance is much more likely than a balance at exactly zero.

Nevertheless in some contexts there may be reasons not to rely on the tardiness

assumption. It is always possible to do this by modelling the balance of the

influences on the main term as a separate variable. It will be explained in Section

2.11 how this is done.

Table 9 summarizes what has been said about tendency switches. It shows

which switches are possible on the basis of the confluence for a single tendency

and maybe the restriction equation for its system specific restriction. Actually the

system as ?????. switches. If the bindingness requirement is satisfied the only

immediate switches of a tendency ∂XY are switches from zero to − or + at states

at which the right hand side of the confluence for ∂XY has the value {−, 0,+}.

There is an important difference between tendency switches on the one hand

and shifts and lag extinctions on the other hand. Values of scaled variables and

lagged tendencies remain constant during the readjustment process described in

chapter 4 whereas current tendencies can be changed by the readjustment process.

Shifts and lag extinctions are transition causes which always lead to a transition to
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right hand
side of the
confluence

Possible switches immediate
or tardy

From to

{−, 0,+}

− + tardy

+ − tardy

0 + immediate

0 − immediate

{−, 0}
− 0 tardy

0 − tardy

{0,+}
+ 0 tardy

0 + tardy

Table 9. Possible tendency switches

a new state, once they become effective. In this sense shifts and lag extinctions are

always feasible. Tendency switches are transition causes which are not necessarily

feasible in the same sense. In Section 3.2.3 the example of a system A will be

presented. This system has only one state. However, at this state the value of the

right hand side of the confluence for a tendency ∂AA is {−, 0,+} and the value

of ∂AA is −. A tendency switch of ∂AA from − to + is present as a transition

cause at the only state of system A, but a transition to a state with ∂AA = + is

not feasible, since there is no state with ∂AA = +.

Tendency switches can be described as hypothetical transition causes. Feasi-

bility is not guaranteed but must be explored with the help of the readjustment

process. More about this will be said in 3.2.

2.10. The structure of confluences and restriction equations

In this section we turn our attention to structural properties required for single

confluences and restriction equations of a base B = (Λ,Γ). These requirements

will be expressed by conditions (c1) to (c10).

Confluences and restriction equations may depend on values of scaled variables.

The confluence for ∂GO in the model of Hume’s specie-flow mechanism and the

confluence for ∂IN in the simple business cycle model of Table 4 are examples.

Within the limits of the ten conditions the dependence of right hand sides on scale

values can be freely specified.

The ten conditions concern confluences and restriction equations for given

values of scaled variables. Nevertheless, for a bounded variable XY it is explicitly

required that the main term of the confluence for ∂XY or the restriction equation

for �XY is accommodated to the boundary restriction ⊲XY . For a given scale
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value of XY the value of ⊲XY is constant at {−, 0}, {−, 0,+}, or {0,+}, but the

general form of the confluence for ∂XY or the restriction equation for �XY must

be described with the help of the symbol ⊲XY , since the constant value depends

in a specific way on the scale value of XY .

Before the conditions (c1) to (c10) can be stated, several definitions have to

be introduced and something has to be said about the motivation of some of the

conditions. A confluence always has a main term (see 2.4). This main term is an

algebraic sum of constant and variable components. A variable component of

the main term of a confluence is a current or lagged tendency with its sign in the

algebraic sum. The constant direction sum is thought of as the combined effect

of several constant influences. We refer to it as the constant component. Of

course, a main term may have no constant components or no variable components,

but it must have at least one component. The value of an empty main term is not

defined.

A restriction equation also always has a main term (see 2.7). In the case of a

restriction equation the constant component is not necessarily a direction sum

but can be any convex direction set. The variable components of the main

term of a restriction equation are not necessarily current or lagged tendencies

with their signs in the algebraic sum but also boundary restrictions or system

specific restrictions with their signs in the algebraic sum. Also the main term of a

restriction equation may have no constant or no variable components, but it must

have at least one component.

Some properties required by the conditions have the purpose to give a clear

and simple structure to main terms. Unnecessary components are avoided. No

component is permitted to appear more than once in the same main term. A

convex direction set is not changed by adding it to itself. Therefore there is no

need for multiple representation of the same component of the algebraic sum.

Zero is not permitted as the value of a constant component of a main term with

at least two components. The main term has the same value whether zero is added

or not. However, zero is not excluded as the value of the constant component if

the main term has no variable components.

If the constant term of a main term is {−, 0,+} then it is not permitted to

have any variable components. In this case variable components are superfluous,

since they could not change the value {−, 0,+} of the main term.

A main term of a restriction equation with ⊲XY and − ⊲ XY as variable

components is not permissible. Since ⊲XY is either {−, 0} or {0,+} or {−, 0,+}

the sum ⊲XY −⊲XY can be replaced by {−, 0,+}. However �XY and −�XY

can occur in the same main term of a restriction equation. Since �XY = 0 is not

excluded the sum �XY −�XY may have the values {−, 0,+} or zero.
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We are now ready to state conditions (c1) to (c10). To some extent the con-

ditions will repeat what has been said above, but there will also be additional

requirements whose reasons will be explained later. In the conditions XY stands

for an arbitrary variable.

(c1) Form of confluences: For given values of the scaled variables a conflu-

ence has one of the following three forms:

(c 1.1) ∂XY = T

(c 1.2) ∂XY = T @ ⊲XY

(c 1.3) ∂XY = T @ �XY

The confluence for ∂XY cannot have form (c 1.1) if XY is bounded and

it cannot have form (c 1.2) if XY is unbounded.

(c2) Form of restriction equations: For given values of the scaled variables

a restriction equation has one of the following two forms:

(c 2.1) �XY = S

(c 2.2) �XY = S @ ⊲XY

The restriction equation for�XY has the form (c 2.1) ifXY is unbounded

and form (c 2.2) if XY is bounded.

(c3) Common structure of main terms: A main term of a confluence or

restriction equation is an algebraic sum with at least one component, at

most one constant component, and finitely many variable components.

Each component appears only once in the algebraic sum.

(c4) Main terms of confluences: A constant component of the main term

of a confluence is a constant direction sum. A variable component of the

main term of a confluence is a current or lagged tendency with its sign in

the algebraic sum.

(c5) Main terms of restriction equations: A constant component of the

main term of a restriction equation is a convex direction set. A variable

component of the main term of a restriction equation is a current or

lagged tendency, a boundary restriction or a system specific restriction,

in all cases with its sign in the algebraic sum.

(c6) Vanishing constant component: A constant component of the main

term of a confluence or restriction equation cannot have the value zero

unless the main term has only one component.

(c7) Full direction set as constant component: If the constant component

of the main term of a confluence or restriction equation has the value

{−, 0,+}, then this main term does not have any variable components.

(c8) Boundary restrictions in main terms of restriction equations:

The main term of a restriction equation (not necessarily for �XY ) cannot

have ⊲XY and −⊲XY together as components.
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(c9) Exclusion of self-dependence in confluences: The main term of

the confluence for ∂XY does not contain ∂XY or −∂XY as one of its

components.

(c10) Exclusion of self-dependence in restriction equations: The main

term of a restriction equation for �XY does not contain ∂XY or −∂XY

and also not �XY or −�XY among its components.

Interpretation. The conditions (c1) to (c10) will be interpreted in the fol-

lowing. The structural properties required by (c1) and (c2) are based on the idea

that boundary restrictions should be expressed where they apply, but not where

they do not apply. Unlike boundary restrictions system specific restrictions can

constrain tendencies of bounded and unbounded variables. A boundary restriction

of a variable XY is absolutely binding. Therefore �XY must be accommodated

to it.

Condition (c3) requires that main terms are algebraic sums. This is natural for

the main terms of confluences, which are interpreted as joint effects of the direc-

tions of individual influences. This is also the idea behind (c4). The situation is

different for main terms of restriction equations. Here (c5) permits not only direc-

tion sums but also convex direction sets that are not necessarily direction sums.

It is maybe useful to look at an example in order to explain the interpretation of

an addition of such components. Let

T = ∂UV + ∂WZ

be the main term of the confluence for ∂XY and assume that XY is unscaled and

that UV and WZ are scaled variables with the scales U, v for UV and W, z for

WZ. If UV and WZ are at their top values then XY cannot be increased but

otherwise all directions are possible. This is described by

∂XY = (∂UV + ∂WZ) @ �XY

and

�XY = ⊲UV +⊲WZ

As long as at least one of both components ⊲UV and⊲WZ has the value {−, 0,+}

the system specific restriction has the same value. At UV = v and WZ = z we

have ⊲UV = {−, 0} and ⊲WZ = {−, 0} and therefore �XY = {−, 0}.

It is not always possible to model the main term of a restriction equation by

the same algebraic sum for all combinations of values for scaled variables. This

can be seen with the help of the following example. Let PD (production) and DE

(demand) be unscaled variables and let

T = ∂DE
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be the main term of the confluence for PD. Suppose that production needs la-

bor input and capacity use in fixed proportion. Let LA with the scale B, f be

the variable labor input and let CA with the scale B, c be the variable capacity

use. (The symbols f, c, and B stand for “full employment”, “capacity limit”, and

“below the upper limit”). Production is limited by each of the two variables LA

and CA. It cannot increase if LA = f or CA = c holds. It can be seen without

difficulty that an adequate system specific restriction for PD cannot be expressed

by an algebraic sum of ⊲LA and ⊲CA. Fortunately, this is not a problem for

the theory proposed here. The limitation of PD by LA and CA is adequately

expressed by

∂PD = ∂DE @ �PD

and

�PD =

{

{−, 0} for LA = f or CA = c

{−, 0,+} else

The permissibility of boundary restrictions in main terms of restriction equations

is a modeling opportunity which does not prevent case distinctions concerning

scale values.

Conditions (c6), (c7) and (c8) exclude redundancies in main terms. This has

been explained before the statement of the conditions. It remains to comment

on (c9) and (c10). It is not clear whether the exclusion of self-dependence in

the sense of these conditions is really necessary for the derivation of the results

of later chapters. One may even gain some formal advantages by abolishing it.

However, a clear causal interpretation of a confluence or restriction equation seems

to require the exclusion of self-dependence. This is important for a reconstruction

of boundedly rational reasoning on economic dynamics.

Conditions (c9) and (c10) prevent circularities in the interpretation of single

confluences and single restriction equations or of a confluence for ∂XY and a re-

striction equation �XY taken together. Without (c9) and (c10) the interpretation

could run into fixed point problems on this local level. Of course circularities can-

not and should not be avoided on the global level of all confluences and restriction

equations taken together. Circularities on the global level are an important driving

force of qualitative dynamic models. Fixed point problems cannot be avoided on

the global level. In fact, a state is the solution of a set of simultaneous confluences

and restriction equations and therefore can be looked upon as a fixed point of the

system. As we shall see in 2.9 it is not obvious that at least one state exists.

The interpretation of a system as a whole must be based on the analysis of the

system. However, a single confluence or restriction equation has to be interpreted
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directly and in isolation before the beginning of analysis. Therefore it seems to be

reasonable to avoid circularities on the local level.

Condition (c9) permits ∂XY − and condition (c10) permits ∂XY − and ⊲XY

in the main term. This does not prevent clear causal interpretations on the local

level. Lagged tendencies are taken from the past and boundary restrictions are

determined by scale values. A scale value may be changed by a shift and a lagged

tendency by a lag extinction. Shifts and lag extinctions cause transitions but dur-

ing a transition lagged tendencies and boundary restrictions do not change. In this

sense lagged tendencies and boundary restrictions causally precede current ten-

dencies and system specific restrictions. During the transition current tendencies

and system specific restrictions change in the course of the readjustment process

which will be explained in chapter 4.

2.11. The anchoring requirement

The conditions (c1) to (c10) of 2.10 concern single confluences and restric-

tion equations or the relationship between a confluence and a restriction equation

connected to the same variable. The “anchoring requirement” is an additional

condition imposed on the list Γ of confluences and restriction equations of a sys-

tem base as a whole. Some further definitions are needed before this requirement

can be expressed. These definitions are relative to a given system base B = (Λ,Γ).

A system piece or shortly a piece appears on the right hand side of con-

fluences and restriction equations and belongs to one of the following categories:

1) values of variables, 2) current tendencies, 3) lagged tendencies, 4) boundary

restrictions, 5) system specific restrictions, 6) constant directions, 7) constant di-

rection sets.

Now it will be explained what it means that a system piece is “anchored”.

This is done with the help of a recursive definition.

A: The following kinds of system pieces are anchored: values of scaled

variables, lagged tendencies, boundary restrictions, constant directions

and constant direction sets.

B: A current tendency is anchored, if all system pieces appearing on the

right hand side of its confluence are anchored.

C: A system specific restriction is anchored if all system pieces on the right

hand side of its restriction equation are anchored.

It is now possible to state the anchoring requirement:

Anchoring requirement:
All system specific restrictions are
anchored.

The anchoring requirement facilitates the analysis. It is crucial for the deriva-

tion of results in later chapters. No other justification can be given. The anchoring
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requirement limits the scope of applications of the theory proposed here, but this

limitation does not seem to be severe. Only system specific restrictions are re-

quired to be anchored.

It can be seen immediately that the anchoring requirement is satisfied for the

models of Table 4 and Table 6. In both cases the only restriction equation is

�DE = ⊲PD. The applicability of the theory proposed here would be too much

narrowed down if also current tendencies were required to be anchored. In the

model of Table 4, the tendency ∂PD depends on ∂DE and ∂DE depends on

∂PD. Therefore neither ∂PD nor ∂DE are anchored. Business cycle models

often involve similar circularities. In the modified model of Table 6, however, all

current tendencies are anchored. This can be seen without difficulty.

Example (An example violating the anchoring requirement). Consider the

following system base B = (Λ,Γ): The list of variables contains two unscaled

variables, XY and UV and no scaled ones. The list Γ of confluences and restriction

equations is as follows:

∂XY = {−} @ �XY

∂UV = −∂XY

�XY = {+}+ ∂UV

It can be seen immediately that neither ∂XY nor ∂UV nor �XY is anchored.

The conditions (b1), (b2) and (b3) of 2.7 and the conditions (c1) to (c10) of 2.8

are satisfied. Let s be a state of (Λ,Γ). It will now be shown that no such state s

exists. Assume ∂XY = − at s. Then at s we have

∂UV = + and �XY = +

This yields ∂XY = + contrary to the assumption ∂XY = −. Assume ∂XY = +

at s. Then at s we have

∂UV = − and �XY = {−, 0,+}

This yields ∂XY = − contrary to the assumption ∂XY = +. Now assume

∂XY = 0 at s. Then at s we have

∂UV = 0 and �XY = +

This yields ∂XY = + contrary to the assumption ∂XY = 0. Since ∂XY must

have one of the values −, 0, or + at a state, it follows that a state for the base

B = (Λ,Γ) of this example does not exist.
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Final definition of a system base: From now on a system base B = (Λ,Γ)

will always be a pair which satisfies conditions (b1), (b2) and (b3) of 2.7 and (c1)

to (c10) of 2.10 as well as the anchoring requirement. These conditions are parts

of the definition of a system base.

Every system base has at least one state. This will be the content of the coro-

lary of theorem 1 in 4.6. The example examined above shows that the anchoring

requirement is important in this respect.

2.12. Making hidden balances explicit

The tardiness assumption about restricted switches underlying Table 9 in 2.9

concerns restricted tendency switches from zero to − or +. Consider a tendency

∂XY with a confluence of the form

∂XY = T @ �XY

Suppose that at a state s we have ∂XY = 0 and �XY = {−, 0}. The switch of

∂XY from 0 to − is tardy according to Table 9. It is implicitely assumed that

the balance of the influences on the main term T is positive.

The specification of a state does not contain any information about the balance

of influences on a main term with the value {−, 0,+}. In this sense this balance

is hidden. It is often quite reasonable to assume that the balance is outside the

restriction, but not always. Suppose for example that the restriction equation for

�XY is as follows

�XY =

{

{−, 0,+} for VW = B

{−, 0} for VW = B

where VW is a scaled variable with the scale b, B. Let s− be a state with VW = b

and ∂XY = 0 from which the state s is reached by an immediate shift of VW from

b to B. Moreover, assume that at s− as well as at s the value of T is {−, 0,+}. In

this situation the balance of influences on T should be zero at s since it was zero

at −. It is natural to proceed from this idea. Therefore the tardiness assumption

about restricted switches is not adequate for the example under consideration.

The difficulty arises, since hidden balances of main terms are not specified by

a state. However this can be changed by modeling the hidden balance as the

tendency ∂BT of an unscaled variable BT . The confluence for ∂XY is replaced

by the following confluences for ∂BT or ∂XY :

∂BT = T

∂XY = ∂BT @ �XY



2.12. MAKING HIDDEN BALANCES EXPLICIT 31

The confluences for tendencies other than ∂XY and all restriction equations re-

main unchanged. Thereby one receives a new base with essentially the same

interpretation as the original one. We say that the new base results from the

original one by making the hidden balance of T explicit.

In the new system the main term of the confluence for ∂XY is formed by the

single tendency ∂BT and the value of this tendency is a part of the specification

of the state. Therefore no hidden balance problem with respect to the main term

of the confluence for ∂XY can arise in the new system.

It is clear that in principle all hidden balances can be made explicit. In this way

every system can be transformed into a new one without hidden balances. There-

fore hidden balances are a modeling problem rather than a substantial difficulty

for the application of our theory.

Making hidden balances explicit increases the number of variables and thereby

makes the analysis more complex. Therefore it is recommendable to rely on the

tardiness assumption about restricted switches wherever there are no strong rea-

sons against this.

Consider a confluence of the form

∂XY = T @ ⊲XY

Let XY be a scaled variable with a top point c. Let s be a state with XY = c.

Moreover assume that at s the value of ∂XY is zero. Here it can be argued that

the balance of influences on T must be positive, if one excludes the special case

that XY has always been at its top point c in the past. The top point c cannot be

reached from the range just below it unless ∂XY is positive there. This justifies

the assumption that ∂XY is still positive when XY arrives at c. Therefore one

can expect that it will rarely meet an application in which the hidden balance of a

main term subject to a boundary restriction needs to be made explicit. However,

this argument does not seem to be transferable to system specific restrictions.





CHAPTER 3

Transition causes and qualitative dynamic systems

3.1. Main transition causes

All definitions of this chapter refer to a fixed but arbitrary system base B =

(Λ,Γ) and the states for this base (see 2.7 and 2.11). The dependence on B will

not always be expressed explicitly.

Up to now we have introduced three kinds of transition causes: Shifts, lag

extinctions and tendency switches. We refer to these three kinds of transition

causes as main transition causes. A fourth transition cause will be introduced

in 3.3. In the following we recapitulate the definition of the three main transition

causes.

A shift is the change of the value of a scaled variable to a neighboring one.

An upward shift is pending at a state, if there the tendency of the variable is

positive and its value is not the top value. Similarly, a downward shift is pending

at a state, if the tendency is negative and the value is not the bottom value.

A lag extinction is the change of the value of a lagged tendency of a variable

to the value of the current tendency of the variable. A lag extinction is pending

at a state, if there the two values are different.

A tendency switch, or shortly a switch, is a movement of a current tendency

∂XY from a direction d1 to a direction d2 and is pending at a state s, if the

following conditions 1) to 4) are satisfied:

1) The value of ∂XY at s is d1
2) d2 6= d1
3) d2 is in the value of the right hand side of the confluence for ∂XY at s

4) If at s the value of the right hand side of the confluence for ∂XY is

{−, 0,+} then d2 6= 0

A tendency switch from d1 to d2 at s is immediate if the right hand side of the

confluence has the value {−, 0,+} and d1 has the value zero at s. Otherwise it is

tardy. The four conditions together with these definitions summarize what has

been said in 2.9.

If a transition cause pending at a state becomes effective, then a readjustment

process begins which finally leads to a new state. This readjustment process will be

described in chapter 4. Values of variables and lagged tendencies are kept constant

33
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during the readjustment process whereas the values of current tendencies and of

system specific restrictions may change.

Pieces which are listed in part A of the definition of being anchored (see 2.11)

are referred to as anchors. Shifts and lag extinctions are changes of anchors.

Accordingly these transition causes are called reanchorings. Tendency switches

do not belong to the category of reanchorings. They do not involve a change of

an anchor.

It already has been pointed out in 2.9 that there is an important difference

between tendency switches and reanchorings. Shifts or lag extinctions always lead

to a transition, once they become effective. Contrary to this a tendency switch

may not be feasible. This will be the subject matter of the next section.

3.2. Feasibility of tendency switches and examples

3.2.1. Example. An example of a tendency switch is provided by state 4 of

the simple business cycle model of Table 4. At this state we have

∂IN = + and ∂PD = +

Moreover �DE = ⊲PD equals {−, 0,+}. Therefore the right hand side of the

confluence for ∂DE has the value

(∂PD − ∂IN) @ �DE = {−, 0,+}

Consequently, a tardy tendency switch of ∂DE from + to − is pending at state

4. If the value of ∂DE is replaced by −, the confluence for ∂PD yields

∂PD = ∂DE = −

This yields the heuristic conclusion that state 6 is reached by the switch of ∂DE

from + to −. As we shall see in chapter 4, the same result is obtained by the

general procedure of the theory proposed here.

The transition from state 4 to state 6 has the economic interpretation that

the upswing ends and a downswing begins before production reaches the capacity

limit c. A tendency switch at state 8 results in an analogous stop of the downswing

before b is reached. In the model of Table 4 the variable DE is the only one with

the property that a tendency switch of this variable can be pending at a state.

A tendency switch of ∂DE is not pending at a state unless the main term of the

confluence for ∂DE has the value {−, 0,+} there. This is the case if the two

tendencies ∂PD and ∂IN have the same value − or +. The states 4 and 8 are

the only ones which satisfy this requirement.

3.2.2. The system A. Table 10 shows a system base with only one state.

Even if this example is not a full fledged system we refer to it as “system A”.
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Figure 5 shows a graphical representation of this base. The graphical conventions

used are the same ones as in Figure 1 with the only difference that the constant

{−} in the main term of the confluence for ∂AA is also represented by a rectangle.

Variables

AA,AB unscaled

Confluences

∂AA = {−}+ ∂AB

∂AB = −∂AA

States

state ∂AA ∂AB

1 − +

Table 10. The system A

{−} AA

AB

+ −

Figure 5. Graphical representation of the system A - An arrow
indicates the influence of a tendency or a constant on the tendency
of another variable. The arrow points to the variable with the in-
fluenced tendency. The sign at an arrow from a variable is the sign
with which the influencing tendency appears in the main term of
the influenced tendency. Constants enter the right hand side of a
confluence as they are shown in their boxes. Therefore no sign is
attached to an arrow from a constant to a variable.

It is clear that all confluences are satisfied at state 1. We now show that the

system has no other states. This is done with the help of a case distinction with

respect to the sign of ∂AB.
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Case 1: ∂AB = −

In view of the confluence for ∂AB we must have ∂AA = +. However, for ∂AB =

− the right hand side of the confluence for ∂AA has the value −. This is a

contradiction. Therefore the system A has no state with ∂AB = −.

Case 2: ∂AB = 0

In this case we must have ∂AA = − and therefore ∂AB = +, contrary to the

assumption ∂AB = 0. It follows that the system A has no state with ∂AB = 0.

Case 3: ∂AB = +

In view of the confluence for ∂AB we must have ∂AA = − in this case, as in state

1. Consequently state 1 is the only one with ∂AB = +.

At state 1 the right hand side of the confluence for ∂AA has the value {−, 0,+}.

Therefore a tendency switch from − to + is pending at state 1. However, since

the system A has only one state, it does not permit any transition to another state

with ∂AB = +. Even if the right hand side of the confluence for ∂AA has the

value {−, 0,+}, the system as a whole enforces ∂AA = −. One must conclude

that a tendency switch of ∂AA is pending but not feasible at the only state of

system A.

At the moment the word “feasible” is used in an informal way. A more precise

explanation of the term will be given later. One might think that a tendency

switch is not really a transition cause, unless it is feasible. However the modeller

may have to decide whether a tendency switch is plausible before the analysis

shows whether it is feasible or not. We must think of a tendency switch as a

hypothetical transition cause. The hypothesis that the transition is feasible may

be confirmed or refuted by the analysis of the system. Nevertheless we continue to

speak of tendency switches as transition causes regardless of whether they really

cause transitions or not.

3.2.3. Feasibility, semifeasibility and hypothetical base. Reanchorings

(see 3.1) do not share the hypothetical character of tendency switches. As we shall

see in chapter 4 shifts and lag extinctions, once they become effective, always lead

to a new state at which the shifted variable or the lagged tendency has the new

value. This difference justifies a different treatment of reanchorings on the one

hand and tendency switches on the other hand by the theory proposed here.

For the purpose of examining whether a switch of a tendency ∂XY from d1 to

d2 at a state s for a base B = (Λ,Γ) is feasible, a hypothetical base B′ = (Λ,Γ′)

for this switch will be used which is obtained from B as follows: The confluence

for ∂XY is replaced by

∂XY = d2

and nothing else is changed.
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It will now be shown that the hypothetical base B′ is a base in the sense of

the definition of 2.9. It is clear that the conditions (c1) to (c10) hold for B′, but

it remains to show that the anchoring requirement is satisified by B′. Obviously

∂XY is anchored in B′ independently of which tendencies are anchored in B.

Therefore every current tendency or system specific restriction which is anchored

in B is also anchored in B′. Consequently B′ satisifes the anchoring requirement.

The readjustment process in the hypothetical base B′ leads to a new state s′ for

B′. This state s′ may or may not be a state of the original base B. If s′ is a state

of B then the switch of ∂XY from d1 to d2 is feasible at s and s′ is the new state

reached in B. Otherwise the tendency switch is not feasible. The explanation of

the term “feasible” is not yet complete since it will only be described in chapter 4

how a new state is reached by the readjustment process in the hypothetical base

B′. Nevertheless the explanation given above is sufficient for the purposes of this

chapter.

Consider the case that a tendency switch from − to + pending at a state s

is not feasible. (The case of a switch from + to − is analogous.) In the example

of system A any movement of ∂AA away from − was impossible. However, this

may be different in other systems. It is conceivable, that a system does permit a

movement of ∂XY from − in the direction of +, but this movement has to stop at

∂XY = 0. In the theory proposed here, a tendency switch from − to + may cause

such a stopped movement. We refer to this possible consequence of a tendency

switch from − to + as a halfway switch from − to 0 at s.

Analogously, if a tendency switch from + to − pending at a state s is not

feasible, a halfway switch from + to 0 is a possible consequence of the switch

from + to − at s.

If the hypothesis of a movement of ∂XY from − to + at s fails in spite

of the fact that this tendency switch is pending at s, then the hypothesis of a

halfway switch from − to 0 has to be examined. This is done with the help of the

hypothetical base for the halfway switch from − to 0 at s. In this hypothetical

base B′′ = (Λ,Γ′′) the confluence for ∂XY is replaced by

∂XY = 0

and everything else remains unchanged. In the same way as for the hypothetical

base B′ = (Λ,Γ′) for the tendency switch from − to + it can be seen that B′′ is a

base in the sense of 2.9. The hypothetical base for a halfway switch from + to 0

is defined analogously.

Suppose that a tendency switch of ∂XY from − to + at a state s is not

feasible. Let B′′ be the hypothetical base for the halfway switch from − to 0 at

s. Then the switch of ∂XY from − to + at s is called semifeasible, if the new
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state s′′ reached by the readjustment procedure in B′′ is a state of B = (Λ,Γ).

Otherwise the switch from − to + is infeasible. The meaning of semifeasible

and infeasible for a switch from + to − is analogous.

Of course, no halfway switch is possible for a tendency switch from d1 to d2
if either d1 = 0 or d2 = 0 holds. Such switches are infeasible if they are not

feasible. No transition is caused by an infeasible halfway switch.

It is important to take notice of the fact that a hypothetical base for a tendency

switch of ∂XY from d1 to d2 does not depend on the state s at which it is pending.

If the same switch is pending at two states s1 and s2 then the same hypothetical

base B′ = (Λ,Γ′) is used for the examination of the feasibility of this switch

at s1 and s2. However, the result of this examination may be different in the

two cases. The readjustment processes used for this purpose run in the same

hypothetical base, but they begin with different “starts”. The concept of a start

will be explained in 4.3. The start depends on the state, but not the hypothetical

base. The same is true for the hypothetical base for a halfway switch of ∂XY for

a switch of ∂XY from − to + or from + to −.

We say that a halfway switch ω = [∂XY → 0] is pending at a state s if a

tendency switch of ∂XY from − to + or from + to − is pending.

3.2.4. The system B. An example for a semifeasible tendency switch is

provided by the system base shown by Table 11, referred to as “system B”. Figure

6 graphically represents this base B. The figure makes use of arrows with hollow

heads in order to indicate influences on restrictions.

BB

BA

BC

{0,+}

{−, 0}

+ +

− +

ut
ut

Figure 6. Graphical representation of the system B - An arrow
with a hollow head indicates an influence on a restriction. A hollow
headed arrow points to the variable in whose restriction equation
the constant appears in the main term.
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It can be seen easily that states 1 and 2 listed in Table 11 satisfy all confluences

of system B. With the help of a case distinction with respect to the value of ∂BA

we now show that there are no other states.

Case 1: ∂BA = −

In this case we have ∂BB = ∂BC = 0 in view of the restrictions by {0,+} and

{−, 0} of ∂BB and ∂BC, respectively. This yields ∂BA = 0, contrary to the

assumption ∂BA = −. Therefore system B has no states with ∂BA = −.

Case 2: ∂BA = 0

Obviously we have ∂BB = ∂BC = 0 in this case. Consequently state 2 is the only

one with ∂BA = 0.

Case 3: ∂BA = +

Here we obtain ∂BB = + and ∂BC = −. It follows that state 1 is the only one

with ∂BA = +.

At state 1 the right hand side of the confluence for ∂BA has the value {−, 0,+}.

Therefore a tendency switch from + to − is pending at state 1. Consider the

hypothetical base obtained by replacing the main term of the confluence for ∂BA

by −. In this hypothetical base ∂BA has the confluence

∂BA = −

The other confluences of system B remain unchanged. It can be seen without

difficulty that the hypothetical base has only one state. At this state we have

∂BA = − and ∂BB = ∂BC = 0 and the right hand side of the confluence for

∂BA has the value zero. Consequently this state does not satisfy the original

confluence for ∂BA. We can conclude that the tendency switch of ∂BA from +

to − at state 1 is not feasible.

We now look at the hypothetical base for the halfway switch of ∂BA from + to

0 at state 1. In this hypothetical base the original confluence for ∂BA is replaced

by

∂BA = 0

as the new confluence for ∂BA. The other confluences of system B remain un-

changed. Obviously the hypothetical base for the halfway switch has only one

state. At this state ∂BA = ∂BB = ∂BC = 0 holds. As we shall see in 4.10.5 the

readjustment process in the second hypothetical base leads to this unique state.

The original confluence for ∂BA is satisfied at this state. Therefore this state

is also a state for the original base and it is the readjustment result, if the ten-

dency switch of ∂BA from + to − at state 1 becomes effective. This switch is

semifeasible.
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Variables

BA,BB,BC unscaled

Confluences

∂BA = ∂BB + ∂BC

∂BB = ∂BA @ �BB

∂BC = −∂BA @ �BC

Restriction equations

�BB = {0,+}

�BC = {−, 0}

States

state ∂BA ∂BB ∂BC �BB �BC

1 + + − {0,+} {−, 0}

2 0 0 0 {0,+} {−, 0}

Table 11. The system B

3.3. Perturbances, potential stationarity and auxiliary base

3.3.1. Concepts. Quantitative definitions of stability make use of small dis-

locations of stationary states. The underlying idea is that of a small exogenous

disturbance of short duration. A stationary state is stable, if the system returns

to it after such a perturbance. Otherwise it is unstable. In the theory proposed

here, a similar question is asked about stationary states. However, in qualitative

systems it is not obvious what is meant by a stationary state. The answer to

this question must be deferred to the next section. The definition of stationarity

depends on one part of the definition of a qualitative dynamic system which still

needs to be introduced. However, it can be said already here that a stationary

state must be “potentially stationary” in the sense of the following definition.

A state s is potentially stationary, if neither shifts nor lag extinctions nor

immediate tendency switches are pending at s. This does not exclude the possi-

bility that a tardy tendency switch is pending at a potentially stationary state. It

may happen that a tardy tendency switch is pending at a potentially stationary

state, but is excluded by assumption. This will become clear in Section 3.4.

Let B = (Λ,Γ) be a base and let s be a potentially stationary state for B.

Moreover let ∂XY be a current tendency for B and let d be a direction with
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d 6= 0. The tendency ∂XY is called perturbable by d, if the following two

conditions (i) and (ii) are satisfied

(i) At s the main term of the confluence for ∂XY has the value zero.

(ii) If the main term of the confluence for ∂XY is subject to a restriction

⊲XY or �XY then d is in the value of this restriction at s.

We say that a positive perturbance of ∂XY is pending at s if (i) and (ii)

hold for d = +. Similarly, a negative perturbance of ∂XY is pending at s if

(i) and (ii) hold for d = −.

A perturbance is thought of as a small temporary exogenous influence of short

duration. A small positive or negative exogenous influence on ∂XY will not have

any effect unless the value of ∂XY is zero at s as required by (i). If the value of

∂XY is + then this value is not changed by a small negative influence. Similarly a

small positive influence does not change the sign of ∂XY if this sign is −. However,

if (i) is satisfied then even a small exogenous positive or negative influence will

have an effect, unless this is prevented by a restriction ⊲XY or �XY . Of course,

if the restriction has the value {−, 0} then a positive exogenous influence on the

main term of the confluence for ∂XY cannot change the value of ∂XY to +.

Therefore (ii) is required.

A perturbance of ∂XY is modelled as a change of the confluence for ∂XY . The

exogenous influence d is added to the main term of this confluence. Thereby the

original base B is changed to the auxiliary base BA for the perturbance of

∂XY by d. This base BA = (Λ,ΓA) differs from B = (Λ,Γ) only by the confluence

for ∂XY and by nothing else. Let T be the main term of the confluence for ∂XY

in B and let TA be the main term of the confluence for ∂XY in BA. The main

term TA is not always the expression T + d, since this expression may not satisfy

the conditions (c3), (c4), (c6), and (c7) required for main terms by 2.7. Equivalent

transformations are applied to T + d in order to obtain a simplified form which

satisfies these conditions. Table 12 shows how this is done.

Six cases with respect to the structure of T are distinguished by Table 12.

In case 1 the main term T has no constant component and T + d satisfies (c3),

(c4), (c6) and (c7). Therefore in this case is T + d. In the other 5 cases let C be

the constant component of T . In these cases T + d has two constants, C and d.

The transformation summation of constants replaces C + d by one constant

C0, the sum of C and d. This constant C0 is d in case 2 in cases 2 and 3 and

{−, 0,+} in cases 4, 5, and 6. In cases 1, 2, 3, 4 and 6 the result satisfies (c3),

(c4), (c6) and (c7) and is the main term TA. In case 5 condition (c7) is not yet

satisfied after the summation of constants. Here it is necessary to delete all variable

components. This transformation is called deletion of variable components. A

transformation is an equivalent transformation if it does not change the value
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Cases

1 2 3 4 5 6

C = d C = 0 C = −d C = −d C =
{−, 0,+}

T has no
constant
component

T has no
variable
component

T has at
least one
variable
component

summation of constants

deletion of
variable
components

TA = T + d TA = T TA = d TA =
{−, 0,+}

TA =
{−, 0,+}

TA =
{−, 0,+}

Table 12. Simplification of T + d.∗)

∗) T is the main term of the confluence for ∂XY in B
C is the constant component of T , if there is any
TA is the main term of the confluence for ∂XY in BA

of the transformed expression for all possible combinations of values for its variable

components. The deletion of variable components is an equivalent transformation,

if it is applied to an expression with a constant component {−, 0,+}. It is clear

that the summation of constants is always an equivalent transformation. After

the deletion of variable components (c3), (c4), (c6) and (c7) are satisfied in case

5, too. At the bottom of Table 12 one finds the form of the main term TA of the

confluence for ∂XY in each of the 6 cases.

The main term T may depend on values of scaled variables. Different combi-

nations of such values may give rise to different expressions for T and thereby also

to different expressions for TA. The positive perturbance of ∂GO in the model

for Hume’s specie flow mechanism provides an example (see 2.1 and 3.8.1). The

confluence for ∂GO in the auxiliary base for this perturbance is as follows:

∂GO =















{−, 0,+} for TR = D

+ for TR = b

+ for TR = S

(1)

The consequences of the positive perturbance of ∂GO will be explored in 5.10.1.

It will now be shown that the auxiliary base BA for a perturbance of ∂XY by

d is always a base in the sense of the definition in 2.9. From what has been said
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above, it is clear that (c1) to (c10) always hold. It remains to be shown that BA

satisfies the anchoring requirement.

The confluences for tendencies other than ∂XY are the same ones in B and

BA. Therefore in all six cases of Table 12 the tendency ∂XY is anchored in BA, if

the pieces of T are anchored in B. Consequently every current tendency and every

system specific restriction is anchored in BA, if it is anchored in B. It follows that

BA satisifies the anchoring requirement and that BA is a base in the sense of the

definition in 2.9.

An auxiliary base BA for a perturbance of ∂XY does not depend on the po-

tentially stationary state at which it is pending. In this respect an auxiliary base

is similar to a hypothetical one (see 3.2.3). If the same perturbance is pending at

two different potentially stationary states s1 and s2 then the same auxiliary base

is used for the examination of the consequences of the perturbance of ∂XY by d

in both cases. However, here too, the “starts” are different for s1 and s2.

3.3.2. Interpretation and informal remarks. A perturbance of a ten-

dency ∂XY modifies the main term of its confluence by the addition of an exoge-

nous influence d. Thereby the original base B is changed to an auxiliary base BA.

Up to simplifying equivalent transformations the main term of the confluence for

∂XY in BA is T + d.

The exogenous influence d on ∂XY is thought of as being of short duration.

For a very short time the auxiliary base BA replaces the original base B. The

duration of the exogenous influence is not long enough to allow tardy transitions

in the auxiliary base. However, any finite number of immediate transitions may

take place in the auxiliary base. Immediate transitions are thought of as taking

practically no time. Therefore the duration of the exogenous influence is not too

short for a finite sequence of immediate transitions.

In the hypothetical base for a tendency switch or a halfway switch the right

hand side of the confluence for the switched tendency is changed to a constant.

Hypothetical bases can be defined in this simple way, since only one transition

is explored in a hypothetical base and during this transition the values of scaled

variables are constant. It does not matter how a hypothetical base is defined for

other combinations of values of scaled variables. However, this is different for an

auxiliary base. An immediate shift may change the combination of values of scaled

variables. Therefore the main term of the confluence of the perturbed variable in

the auxiliary base must correctly reflect the temporary exogenous influence at

every state of this base which can be reached by immediate transitions. This

is most easily achieved by a definition which covers all possible combinations of

values of scaled variables.
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3.3.3. Heuristic discussion of an example. We now turn our attention

to the heuristic discussion of a specific example, namely, a positive perturbance

of ∂DE at state 9 of the simple business cycle model shown by Table 4 in 2.5.

Obviously state 9 is potentially stationary. It is also stationary in the sense of the

definition which will be given in 3.4. The confluence for ∂DE does not depend

on values of scaled variables. The main term of this confluence has no constant

term. Therefore the confluence for ∂DE in the auxiliary base for the positive

perturbance of ∂DE at state 9 is as follows:

∂DE = (∂PD − ∂IN + {+}) @ �DE

At state 9 we have PD = n and therefore ∂IN = 0 and

�DE = ⊲PD = {−, 0,+}.

The positive exogenous influence changes the value of the main term of the conflu-

ence for ∂DE at state 9 from 0 to +. Therefore one can expect that a state with

PD = n and ∂DE = + will be reached in the auxiliary base. At such a state the

confluence for ∂PD yields ∂PD = +. Moreover ∂IN as well as ⊲PD and �DE

have the same values as at state 9. We can heuristically conclude that this state

is the first state of the auxiliary base reached from state 9 of the orginal base. (As

we shall see in 4.10.3 the formal application of the theory proposed here yields the

same result.) An immediate shift of PD from n to H is pending at this new state

of the auxiliary system. As long as an immediate transition cause is pending at a

state reached in the auxiliary system, the transition process stays in this system.

The state with

PD = H and ∂IN = ∂PD = ∂DE = +

of the auxiliary system is the only one with PD = H at which ∂PD and ∂DE have

the same values as before. Therefore one can expect that this state is reached by

the shift from n to H in the auxiliary system. (Here, too, the formal procedure of

the theory proposed here comes to the same conclusion). No immediate transition

cause is pending at this new state; moreover, it is also a state of the original system,

namely state 4 of Table 5 in 2.5. With this state the sequence of transitions returns

to the original system.

State 4 is a state of the cycle of the model of Table 4 (see Figure 3 in 2.5).

The system does not return to the stationary state 9 from there. Therefore state 9

must be considered to be unstable with respect to a positive perturbance of ∂DE

by any reasonable definition of stability. (According to the definition of stability

given in 5.6, state 9 is unstable with respect to this perturbance.)
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3.4. The four kinds of transition causes

Four kinds of transition causes have been described:

1. Shifts

2. Lag extinctions

3. Tendency switches

4. Perturbances.

A precise description of the notion of a qualitative dynamic system makes it nec-

essary to introduce transition causes as formal objects. In order to make this

clear a notation is adopted which denotes a transition cause by an expression in

rectangular brackets:

[XY → V ] immediate shift of XY to a range V

[XY → v] tardy shift of XY to a point v

[∂XY −] lag extinction of ∂XY −

[∂XY → d] tendency switch of ∂XY to d

[∂XY : +] positive perturbance of ∂XY

[∂XY : −] negative perturbance of ∂XY

A transition due to a main transition cause (a shift, a lag extinction or a

tendency switch) is called a main transition. Similarly, a transition due to an

immediate transition cause is called an immediate transition and a transition

due to a perturbance is called a perturbance transition.

In the case of a tendency switch ω = [∂XY → d] pending at a state s the

readjustment process is applied in the hypothetical base Bω = (Λ,Γω). As has

been explained in 3.2 this base Bω is obtained from B = (Λ,Γ) by replacing the

original confluence for ∂XY by ∂XY = d. Nothing else is changed. If it turns

out that ω is not feasible at s, then the readjustment process is also applied to

the halfway switch of ∂XY to zero at s in the hypothetical base for this halfway

switch. We use the notation µ = [∂XY → 0] for the halfway switch associated to

ω. However, it should be kept in mind that a halfway switch is not a transition

cause, but a possibility which has to be explored, if a tardy tendency switch fails

to be feasible. If ω is not feasible at s then the readjustment process is applied

to the halfway switch in Bµ = (Λ,Γµ). As has been explained in 3.2 this base

Bµ is obtained from B = (Λ,Γ) by replacing the original confluence for ∂XY by

∂XY = 0. Nothing else is changed.
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3.5. The priority ranking

Usually several main transition causes are pending at a state. In such cases

qualitative reasoning is often guided by plausibility judgments about which tran-

sition causes should be taken seriously and which ones should be neglected. Such

judgments are assumptions rather than conclusions and therefore must be formal-

ized as a part of a qualitative dynamic system.

Sometimes it is not sufficient to make a distinction between plausible and

implausible transition causes. The system may have a cycle such that at every

state of the cycle the same shift is pending. The shift may be implausible at every

state of the cycle, but it must happen eventually. It therefore cannot be completely

excluded from consideration. An example of this kind will be discussed in the

next section. It may be necessary to form judgments about the order of priority in

which transition causes at a state are considered. The notion of a priority ranking

formally expresses such judgments.

The priority ranking concerns only main transition causes. Only at stationary

states perturbances are considered. A stable stationary state is required to be

stable against all plausible perturbances. Therefore it is unnecessary to distinguish

degrees of plausibility as far as perturbances are concerned.

A priority ranking ρ for a system base (Λ,Γ) is a function which assigns a

rank ρ(ω, s) of ω at s to every pair (ω, s) such that s is a state for (Λ,Γ) and ω is

a main transition cause pending at s. The ranks ρ(ω, s) are non-negative integers.

The priority order at a state s for (Λ,Γ) is the restriction of ρ to pairs (ω, s)

with this s.

Rank 1 indicates the highest priority, rank 2 the second highest and so on.

Rank zero means that the transition cause has no priority whatsoever and is

simply omitted from consideration. Several main transition causes may have the

same rank at the same state. The set of all transition causes with rank k at s is

denoted by φk(s).

Priority rankings cannot be chosen completely arbitrarily. Some definitions

need to be introduced before the statement of the conditions imposed on priority

rankings.

A state s is called fleeting if at least one immediate transition cause is pending

at s. A state s is lasting, if no immediate transition causes are pending at s. A

persistent transition cause is a tardy shift or a lag extinction. An exposed state

s is a lasting state at which at least one persistent transition cause is pending.

It can be seen without difficulty that a lasting state is potentially stationary

if and only if it is not exposed. The following conditions (d1), (d2) and (d3) are

imposed on the priority ranking ρ:
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(d1) Only persistent transition causes can have ranks greater than 1. All other

transition causes have ranks zero or 1.

(d2) At a fleeting state s the set φ1(s) contains at least one immediate transi-

tion cause, but no tardy ones and φk(s) is empty for k > 1.

(d3) At an exposed state s the set φ1(s) is non-empty and all persistent tran-

sition causes have positive ranks.

A state is either fleeting or exposed or potentially stationary. The three condi-

tions do not explicitely mention potentially stationary states. However, no other

main transition causes than tardy tendency switches can be pending at a poten-

tially stationary state. By (d1) tardy tendency switches must have rank zero or 1.

Therefore, the conditions (d1), (d2) and (d3) imply the following condition (d4):

(d4) At a potentially stationary state s the set φ1(s) may or may not be empty

and φk(s) is empty for k > 1.

The theory proposed here formalizes assumptions on the plausibility of main

transition causes as a ranking rather than a set of plausible main transition causes.

In this way difficulties can be overcome, which concern persistent transition causes

at exposed states. Condition (d3) permits degrees of plausibility for persistent

main transition causes at exposed states. For fleeting states and potentially sta-

tionary states φ1(s) is a set of plausible main transition causes and φk(s) is empty

for k > 1. This means that the concept of a priority ranking does not deviate

more than necessary from that of a set of plausible main transition causes.

Consider an exposed state. Normally one would expect that a transition cause

of rank 1 becomes effective at this state. However it may happen that as long

as this is the case the system stays in a set of states with the property, that the

same persistent transition cause of higher rank than 1 is pending at every state of

this set. Even if this persistent transition cause is less plausible it must happen

eventually. The modeller must adjust to the situation by enlarging the set of main

transitions considered as plausible to persistent transition causes of higher rank.

Condition (d3) prepares the ground for this.

It will be shown in chapter 5 that there cannot be an infinite sequence of

immediate transitions. Therefore the difficulty of a persistent tardy transition

cause pending at every state of such a sequence does not arise. It will also be shown

in chapter 5 that immediate tendency switches are always feasible. Therefore it

cannot happen, that only infeasible tendency switches are in φ1(s) at a fleeting

state s.

At an exposed state s the set φ1(s) may contain only tardy tendency switches

and all of them may be infeasible. In this case, too, an enlargement of the set of

main transitions considered to be plausible beyond φ1(s) is necessary. One could

avoid this by the requirement that infeasible tardy tendency switches always must
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have rank zero. However, if this is done, one cannot specify the priority ranking

before the analysis of the feasibility of tendency switches. It seems to be better

to model initial plausibility expectations and a framework for adjusting them, if

necessary.

We say that the priority order at a state s has a gap at rank j if φj(s) is empty

but for some k > j the set φk(s) is non-empty. It can be seen without difficulty

that conditions (d1) to (d3) exclude a gap of rank 1. A gap at a greater rank

j is possible but only at an exposed state. To some extent the theory proposed

here makes use of rank comparisons among persistent transition causes at different

exposed states. Therefore the possibility of ranks greater than 1 serves a useful

purpose.

3.6. The perturbance assignment

In this section we shall explain how assumptions on the plausibility of pertur-

bances are modelled by the theory proposed here. We begin with the definition of

stationarity.

A potentially stationary state s has been defined as a state at which no other

main transition causes than tardy tendency switches are pending (see 3.3). More-

over φk(s) is empty for k > 1 if s is potentially stationary (see (d4) in 3.5). A

potentially stationary state s is stationary, if φ1(s) is empty or contains no other

transition causes than infeasible tardy tendency switches.

It is useful to distinguish two kinds of stationarity. A stationary state s is ex

ante stationary if φ1(s) is empty and ex post stationary otherwise. It can be

seen before the determination of the feasibility of tardy tendency switches whether

a state is ex ante stationary or not, but if it is not ex ante stationary it may still

turn out that it is ex post stationary.

In the theory proposed here plausibility judgments on perturbances are formed

for every potentially stationary state s for the case that it turns out to be ex post

stationary if it is not ex ante stationary anyhow. A perturbance assignment α

for a system base (Λ,Γ) is a function which assigns a set α(s) of perturbances at

s to every potentially stationary state s for (Λ,Γ).

The definition of stability for a stationary state s will require stability against

every perturbance ω ∈ α(s). The set α(s) may be empty or non-empty. The

plausibility judgments expressed by α(s) are conditional in the sense that they are

thought of as reasonable in the case that s is stationary and irrelevant otherwise.

We refer to α(s) as the expected perturbance set at s and to the elements of

α(s) as expected perturbances at s.
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3.7. The definition of a qualitative dynamic system

A qualitative dynamic system

Φ = (Λ,Γ, ρ, α)

consists of a system base (Λ,Γ), a priority ranking ρ for (Λ,Γ) and a perturbance

assignment α for (Λ,Γ). It is maybe useful to recapitulate the definitions of the

four parts of a qualitative dynamic system.

Λ is the list of variables. This list contains finitely many variables, scaled

variables with their scales and unscaled variables (see 2.1).

Γ is the list of confluences and restriction equations. This list has

the properties (b1), (b2) and (b3) of 2.7. Moreover the confluences and

restriction equations in this list satisfy the conditions (c1) to (c10) of 2.8.

In addition to this the anchoring requirement of 2.9 is satisfied for the list

as a whole.

ρ is the priority ranking. The function ρ assigns a rank ρ(ω, s) to every

pair (ω, s) such that s is a state of the system and ω is a main transition

cause pending at s. The rank ρ(ω, s) is a non-negative integer. The

priority ranking must satisfy the conditions (d1) to (d3) of 3.5.

α is the perturbance assignment. The function α assigns a set α(s) of

expected perturbances at s to every potentially stationary state s.

All definitions in this chapter and chapters 4 to 7 will refer to a fixed but

arbitrary qualitative dynamic system, unless they concern specific examples only.

This will generally not be expressed explicitly.

It is possible that a qualitative dynamic system does not have any potentially

stationary state. Of course, one does not have to specify a perturbance function if

this happens. Formally, in this case α is an empty function which maps the empty

set onto itself. Similarly it is not excluded that no transition causes are pending

at any state. Then not only α but also ρ is the empty function.

3.8. Examples of qualitative dynamic systems

Up to now five examples of system bases have been described. In the following

we shall specify a priority ranking and a perturbance assignment for each of these

system bases. Thereby we obtain five examples of qualitative dynamic systems.

3.8.1. Hume’s specie-flow mechanism. This model has been described in

Sections 2.1 and 2.2. The only transition causes pending at states of this model

are shifts and perturbances. Tardy shifts of TR to b are pending at states 1 and

3 and no other main transition causes. No main transition causes are pending at

state 2. It follows by condition (d3) that the tardy shifts at states 1 and 3 must
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receive rank 1. Therefore the priority ranking is specified in this way, which is the

only possible one.

The only potentially stationary state is state 2. In fact, this state is ex ante

stationary, since no main transitions are pending there. We specifiy the pertur-

bance assignment as follows: The expected perturbance set of state 2 has exactly

two elements, namely the positive and negative perturbances of ∂GO. These per-

turbances are not the only ones pending at state 2. The tendencies of ∂DE,

∂EX , and ∂IM are also perturbable. However, the way in which the perturbance

assignment is specified here, is akin to Hume’s original argument.

3.8.2. The simple business cycle model of Table 4. In this case the

priority ranking described by Table 13 suggests itself. The shifts pending at states

1 to 8 receive rank 1. These states belong to the cycle shown by Figure 3 in

2.6. All other main transition causes pending at states 1 to 8 receive rank zero.

Thereby the tardy tendency switches pending at states 4 and 8 are excluded from

consideration.

State 9 is the only potentially stationary state. No main transition causes are

pending at this state. Therefore state 9 is ex ante stationary. The perturbance

set for state 9 is specified as the set of the positive and negative perturbances of

∂IN .

state PD ⊲PD =
= �DE

∂PD ∂DE ∂IN priority
rank 1∗

expected
perturbances

1 b {0,+} + + − [PD → L] /

2 L {−, 0,+} + + − [PD → n] /

3 n {−, 0,+} + + 0 [PD → H ] /

4 H {−, 0,+} + + + [PD → c] /

5 c {−, 0} − − + [PD → H ] /

6 H {−, 0,+} − − + [PD → n] /

7 n {−, 0,+} − − 0 [PD → L] /

8 L {−, 0,+} − − − [PD → b] /

9 n {−, 0,+} 0 0 0 /∗∗
[∂IN : +],
[∂IN : −]

Table 13. Priority ranking and perturbance assignment
for the model of Table 4.

∗All main transition causes which do not have rank 1, have rank zero
∗∗No main transition causes are pending at state 9



3.8. EXAMPLES OF QUALITATIVE DYNAMIC SYSTEMS 51

One could also look at an alternative priority ranking for the model of Table

4. One could, for example, give rank 1 not only to the shifts pending at states 1

to 8 but also to the tardy tendency switches of ∂DE pending at states 4 and 8.

In 3.2 the heuristic conclusion has been reached that a tendency switch of ∂DE

at state 4 from + to − leads to state 6. The upswing ends and the downswing

begins before the capacity limit c is reached. Essentially the same line of reasoning

comes to the heuristic conclusion that a tendency switch of ∂DE at state 8 from

− to + leads to state 2. The downswing ends and the upswing begins before the

minimum production b is reached. The alternative priority ranking would result

in a different picture of the cycle. The new picture leaves it open how the upswing

and the downswing end. The movement of production may be reversed at the

boundaries of its scale or before.

3.8.3. The modified simple business cycle model of Table 6. If a sys-

tem has many states one may wish to specify the priority ranking and the pertur-

bance assignment on the basis of general principles which can be applied to every

state. Thereby one avoids the necessity of looking at every state separately. The

priority ranking shown by Table 14 is based on the following principles applied to

every priority order at a state:

1. All immediate transition causes have rank 1.

2. All tardy tendency switches have rank zero.

3. A lag extinction of ∂PD− has priority over a tardy shift of PD at every

exposed state at which both are pending

4. Priority orders have no gaps (see 3.5).

The perturbance assignment of Table 14 is based on the following principle:

5. At a potentially stationary state s all positive and negative perturbances

of ∂IN are in α(s) but no other ones.

Together with the conditions (d1) to (d4) imposed on priority orders (see

3.5) these five principles fully determine the priority ranking and the perturbance

assignment of Table 14.

state PD ∂PD− ∂PD rank 1 rank 2
expected

perturbances

1 b − 0 [∂PD−] / /

2 b − + [PD → L] / /

3 b 0 + [PD → L] / /

— continuation next page

Table 14: Priority ranking and perturbance assignment

for the model of Table 6.
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state PD ∂PD− ∂PD rank 1 rank 2
expected

perturbances

4 b + + [PD → L] / /

5 L − − [PD → b] / /

6 L − 0
[∂DE → −],

[∂DE → +]
/ /

7 L − + [∂PD−] [PD → n] /

8 L 0 + [∂PD−] [PD → n] /

9 L + + [PD → n] / /

10 n − − [PD → L] / /

11 n 0 0 / /
[∂IN : −],

[∂IN : +]

12 n + + [PD → H ] / /

13 H − − [PD → n] / /

14 H 0 − [∂PD−] [PD → n] /

15 H + − [∂PD−] [PD → n] /

16 H + 0
[∂DE → −],

[∂DE → +]
/ /

17 H + + [PD → c] / /

18 c − − [PD → H ] / /

19 c 0 − [PD → H ] / /

20 c + − [PD → H ] / /

21 c + 0 [∂PD−] / /

Table 14: Priority ranking and perturbance assignment

for the model of Table 6.

The example shows that one does not need a complete overview over all possible

states, before a priority ranking and a perturbance assignment can be specified.

Of course, different principles may be adequate for different models.

3.8.4. The system A. This system has only one state (see 3.2.2). The pri-

ority ranking and the perturbance assignment of system A are shown by Table 15.
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state ∂AA ∂AB
priority
rank 1

expected
perturbances

1 − + [∂AA → +] /

Table 15. Priority ranking and perturbance assignment of system A.

Only one transition cause is pending at the only state, the tendency switch of

∂AA which receives the priority rank 1. State 1 is potentially stationary and in

fact ex post stationary since the tendency switch is infeasible (see 3.2.2). As no

perturbances are pending at state 1, the expected perturbance set of this state is

necessarily empty.

Of course, it makes no sense to assign rank 1 to a tendency switch at state 1,

once it is known that the system has no other states. However the ranking may

be derived from a general principle, e.g., that every main transition cause pending

at an exposed state receives rank 1.

3.8.5. The system B. The system has two states 1 and 2 (see 3.2.4). The

priority ranking and the perturbance assignment are shown by Table 16. At state

state ∂BA ∂BB ∂BC �BB �BC priority
rank 1

expected
perturbances

1 + + − {0,+} {−, 0} [∂BA → −] /

2 0 0 0 {0,+} {−, 0} /
[∂BA : −],
[∂BA : +]

Table 16. Priority ranking and perturbance assignment of system B.

1 only one main transition cause is pending, the tendency switch of ∂BA from +

to −, which receives the priority rank 1. No main transition cause is pending at

state 2. Each of the two states is potentially stationary. However no tendencies

are perturbable at state 1. Therefore the expected perturbance set of state 1 is

empty. At state 2 all tendencies are perturbable but only the negative and positive

perturbances of ∂BA are in the expected perturbance set specified by Table 16.

3.8.6. Further remarks. It can be seen without difficulty that the four sys-

tems described in 3.8 satisfy the conditions (d1), (d2), and (d3) imposed on pri-

ority rankings in 3.5. The notion of a priority ranking by general principles is

intentionally not made precise. A precise definition would require an exact de-

scription of the properties of a state to which such principles can refer. This

would unnecessarily restrict the space of possible priority rankings. There may be

applications which require deviations from general principles for particular states.
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Therefore it seems to be preferable to preserve the flexibility gained by permitting

any specification of the priority ranking in agreement with (d1), (d2), and (d3).

3.9. The system C

It may be hard to understand why priority rankings need to be specified and

not just sets of transition causes which should be taken into account. In the

following this will be explained with the help of an example. This example is the

“system C” described by Table 17.

Variables

CA scale B, c

CB,CC unscaled

Confluences

∂CA = {+} @ ⊲ CA

∂CB = ∂CA+ ∂CC

∂CC = {−}

States and priority ranking

priority order

state CA ∂CA ∂CB ∂CC rank 1 rank 2

1 B + − − [∂CB → +] [CA → c]

2 B + 0 − [∂CB → −], [∂CB → +] /

3 B + + − [∂CB → −] [CA → c]

4 c 0 − − / /

Perturbance assignment

The expected perturbance set for the potentially stationary state 4 is empty.

Table 17. The system C

System C has only 4 states. No transition causes are pending at state 4.

Therefore no priority order is assigned to state 4. The state 4 is potentially

stationary and in fact ex ante stationary. The expected perturbance set for state

4 must be empty since no perturbances are pending at this state. The states 1

and 3 are exposed, since the tardy shift [CA → c] is pending at these states. This

shift receives rank 2 at states 1 and 3 and the tardy tendency switches pending

at these states have rank 1. State 2 is fleeting. The immediate tendency switches

at state 2 have rank 1 and the shift [CA → c] pending at state 2 receives rank
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0 at this state as required by (d2). It can be seen immediately that the priority

ranking satisfies conditions (d1), (d2), and (d3).

In chapter 4 it will become clear that all the tendency switches of ∂CB pending

at states 1, 2, and 3 are feasible and lead to the new state obtained if the value

d1 of ∂CB is replaced by the value d2 to which ∂CB is switched. No further

adjustment is needed in all these cases. Similarly the shift [CB → c] always leads

to state 4, the only state with CB = c.

Figure 7 shows the transition diagram for system C.

state 4:
CA = c

∂CA = 0 ∂CB = −

state 3:
CA = B

∂CA = + ∂CB = +

state 2:
CA = B

∂CA = + ∂CB = 0

state 1:
CA = B

∂CA = + ∂CB = −

1 immediate
switch

1
immediate
switch tardy

switch1

tardy
switch1

2

shift

2

shift

Figure 7. The transition diagram for system C

The transitions due to causes of highest priority are shown by unbroken lines and

those of rank 2 by broken lines. The rank of a transition is also indicated as a

number at the corresponding lines.

Suppose that in the system C only the transition causes of highest rank are

considered. This means that a transition starting from states 1, 2, or 3 always

leads to one of these three states. A transition due to an immediate tendency

switch at state 2 moves the system to state 1 or state 3. Once one of these two

states has been reached, the system alternates between them. State 4 can never
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be reached. However, this is not compatible with the heuristic principle that a

shift pending for a long time must happen eventually (see 2.6). Therefore one

cannot restrict oneself to the specification of the transition causes of the highest

priority. Transitions of lower priority may have to be taken into account in the

construction of a transition diagram. In the next section it will be explained how

the priority ranking enters the construction of the transition diagram.

3.10. Transition diagrams and permissible paths

All definitions of this section and the following chapters are relative to a fixed

but arbitrary system (Λ,Γ, ρ, α). As has been explained at the end of 3.7 a system

is formed by a base (see 2.7 and 2.9) together with a priority ranking ρ and a

perturbance assignment α for this base.

Formally a transition diagram is a valued directed graph with the additional

feature that a transition cause is associated to each edge. The vertices stand for

the states and the edges show possible transitions. Each edge has a positive integer

value, the rank of the transition cause associated to it.

Transition diagrams show only main transitions. The rank of a transition

is the rank of the underlying transition cause. The possible consequences of per-

turbances are included in extended transition diagrams which are not explained

here, but later in Section 4.4.

The tentative transition diagram shows all states and all main transitions

of positive rank. The name “tentative” is attached to this diagram since it is not

yet the transition diagram which will be defined later. The transition diagram will

show only transitions up to a certain rank. As in the case of system C one may

have to include transitions of lower priority but one does not have to go further

than necessary in this respect.

The construction of the tentative transition diagram involves the readjustment

process which will be introduced in chapter 4. For any given pair (ω, s) such

that ω is a main transition cause pending at a state s the readjustment process

uniquely determines a new state s′, the result of the transition caused by ω at s.

In the following we shall not be concerned with the construction of the tentative

transition diagram but rather with the way in which the priority ranking enters

the derivation of the transition diagram from the tentative transition diagram.

For this purpose we can look at the tentative transition diagram as given.

A tentative path is a finite or infinite sequence of states continued as long

as possible in such a way, that a main transition of positive rank leads from one

state to the next. In the case of a finite tentative path the last state reached must

be a state at which no main transition cause of positive rank is pending. If a

tentative path begins at such a state it also ends there. This degenerate case is
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not excluded. A transition on a tentative path is a transition from one state on

the path to the next one. The rank of a tentative path is the maximum of all

ranks of transitions on the path, if there is at least one transition on the tentative

path. Otherwise the rank of the path is 1.

A state may be reached more than once on a tentative path. Therefore one

speaks of the m-th member of the sequence as the m-th episode of the path. In

this way one can refer to a state together with its place in the path.

We say that a tentative path has an unresolved shift, if from some episode

on, the same shift is pending at this episode and all later ones. Here the words

“the same shift” mean that the variable and its values from which and to which

the shift proceeds are always the same. Clearly, a reasonable path should not have

an unresolved shift.

Not only shifts but also lag extinctions may be unresolved. In order to describe

what is meant by this it is convenient to introduce the following manner of speak-

ing: + is above zero and −, and zero is above −. Similarly − is below zero and

+, and zero is below +. A tentative path has an unresolved lag extinction, if

from some episode on the value of a lagged tendency ∂XY − does not change and

stays always above or always below the corresponding current tendency ∂XY . A

tentative path is a permissible path, if it neither has an unresolved shift nor an

unresolved lag extinction.

As the example of system C shows, the absence of unresolved shifts and lag

extinctions is a highly desirable feature of a tentative path. A permissible path of

rank 1 starting with a given state does not always exist. This happens for states

1, 2, and 3 of system C. In such cases one has to look for a permissible path of

higher rank. The concept of a priority ranking makes this possible.

Condition (d3) of 3.5 imposed on priority rankings requires that tardy shifts

and lag extinctions have positive ranks at lasting states. This prevents the possi-

bility that a shift or a lag extinction remains unresolved simply because it receives

rank zero wherever it is pending. Therefore condition (d3) of 3.5 is imposed on

priority rankings. At the moment we cannot yet prove that a permissible path

starting with a given state always exists. This will be done in 5.7 on the basis of

properties of the readjustment process which has not yet been defined. Therefore

the definition of a transition diagram given below avoids this question.

We say that the tentative transition diagram is ill structured, if for at least

one state a permissible path starting with this state does not exist. Otherwise the

tentative transition diagram is called well structured.

We now define the rank of a well structured tentative transition diagram. This

rank is the lowest integer k∗ such that for every state s a permissible path starting

at s with a rank k ≤ k∗ can be found. The transition diagram derived from



58 3. TRANSITION CAUSES AND QUALITATIVE DYNAMIC SYSTEMS

a well structured tentative transition diagram shows all main transitions of ranks

1, ..., k∗ and no others. In other words, the transition diagram results from the

tentative transition diagram by the deletion of all transitions of ranks greater than

k∗.

A path in the transition diagram is a tentative path whose rank k is at most

k∗. Obviously a permissible path starting with a given state can always be found

among the tentative paths in a transition diagram which is derived from a well

structured tentative transition diagram.



CHAPTER 4

Readjustment

4.1. Prestates

A transition from one state to another begins with a transition cause becoming

effective. An initial local change of a scaled variable, a lagged tendency or a

confluence has repercussions throughout the system. Confluences and restriction

equations are upset and have to be readjusted. Such readjustments may disturb

other confluences and restriction equations and their adjustment may have further

repercussions and so on.

It is a core problem of the theory proposed here, to model a reasonable read-

justment process with good mathematical properties. Starting from any state and

any transition cause pending there, the readjustment process should converge in

finitely many steps to a new state.

The readjustment process can be thought of as the description of a quick

dynamics. States are balanced in the sense that all confluences and restriction

equations are satisfied. This balance is absent in the quick dynamics. Nevertheless

it must run in some space. The points of this space are the “prestates” which will

be described in the following.

A state is a specification of values for all scaled variables, all current and

lagged tendencies, and all system specific restrictions, such that all confluences and

restriction equations are satisfied. A prestate is similar but with some important

differences. One of these differences is a double representation of each current

tendency ∂XY by a left tendency ∂XYL and a right tendency ∂XYR.

The left tendency ∂XYL is the value of ∂XY on the left hand side of its

confluence and the right tendency ∂XYR is the value of ∂XY on the right hand

sides of confluences and restriction equations. The left and right tendencies of a

variable may be temporarily different during the readjustment process.

The left tendency ∂XYL represents the current value of ∂XY whereas ∂XYR

represents its influence on other tendencies and system specific restrictions. At a

prestate we may have ∂XYL = + or ∂XYL = − and at the same time ∂XYR = 0.

This means that the value of ∂XY is unequal to zero, but its influence is so weak

in comparison to other tendencies that it is adequately represented by ∂XYR = 0.

In fact this is the only way in which ∂XYL and ∂XYR can be different during the

59
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readjustment process. In the course of this process we always have ∂XYR = 0 for

∂XYL 6= ∂XYR.

It is convenient to have a common name for the components of the new state

which are determined by the readjustment process. The notion of a directional

serves this purpose. A directional is either a current tendency or a system specific

restriction.

In addition to values of scaled variables, lagged tendencies, left and right cur-

rent tendencies, and system specific restrictions a prestate specifies a confirma-

tion status for every directional. The confirmation status of a directional is either

L (loose) or F (firm). Accordingly we speak of loose and firm directionals.

A firm directional has already found its final value and is not changed any

more by the readjustment process. At the beginning all directionals are loose but

during the process more and more of them become firm. Whether a directional is

changed or not depends on what is firm on the right hand side of its confluence

or restriction equation. Therefore it is necessary to keep track of the confirmation

status. We are now ready for the definition of a prestate.

A prestate is a specification of values for all scaled variables, for all lagged

tendencies, for the left and the right tendencies of all variables, for all system spe-

cific restrictions, and for the confirmation status of each directional. The value of

a scaled variable is on its scale, the values of lagged and of left and right tendencies

are directions, the values of system specific restrictions are convex direction sets

and the value of the confirmation status of a directional is either L or F .

A prestate p can be thought of as a vector with components for every item

specified. In this sense we speak of the components of a prestate. We now explain

what it means that a confluence, or restriction equation is satisfied at a prestate p.

The value of the right hand side of a confluence or restriction equation at p is

obtained by inserting the values of the corresponding right tendencies for current

tendencies and, of course, the values of other components of p.

A confluence for a tendency ∂XY is satisfied at a prestate p, if at p the value

of ∂XYL is in the value of the right hand side of the confluence for ∂XY . A

restriction equation is satisfied at a prestate p if at p the value of the left hand

side of this restriction equation is equal to the value of its right hand side.

Note that a confluence for a tendency ∂XY can be satisfied at a prestate p

with ∂XYL 6= ∂XYR. In fact, it does not even depend on ∂XYR whether the

confluence for ∂XY is satisfied or not, since a current tendency does not appear

on the right hand side of its own confluence.
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4.2. Operations

A directional is adjusted at a prestate p, if there its confluence or restric-

tion equation is satisfied. Otherwise it is maladjusted. A directional is called

mature at a prestate p, if the value of the right hand side of its confluence or

restriction equation is fully determined by firm directionals. This does not exclude

the possibility that some of the directionals appearing on the right hand side are

loose; but whatever their value will be at the end, the value of the right hand side

cannot change any more in the course of the readjustment procedure.

Consider the example of a confluence

∂XY = T @ �XY

Suppose that at a prestate p we have �XY = + and �XY is firm. Then ∂XY

is mature, regardless of whether loose tendencies appear on the right hand side or

not.

A directional which is not mature is called immature. A split tendency at p

is a current tendency ∂XY with ∂XYL 6= ∂XYR at p: If we have ∂XYL = ∂XYR

at p, then ∂XY is called univalued at p. A current tendency ∂XY is a non-zero

tendency at p if there ∂XYL = − or ∂XYL = + holds. If ∂XYL = 0 holds at p

then ∂XY is called a zero tendency at p. The distinction between non-zero and

zero tendencies at a prestate p concerns left tendencies only.

The readjustment process can be looked upon as a procedure for the determi-

nation of the next state in a transition. An application of this procedure leads to

a sequence of prestates which is continued as long as there are loose directionals.

The steps from one prestate to the next involve three operations to be described

in the following. The way in which these operations enter the process will be

explained in Section 4.5.

Adaptation: Let t be the value of ∂XYL and W be the value of the right hand

side of the confluence for ∂XY at a prestate p. Adaptation of ∂XY at p means

that the value of ∂XYL becomes t′ = t @ W and nothing else is changed. This

yields a new prestate p′ which results from p by the adaptation of ∂XY .

Adaptation of a system specific restriction �XY at p means that the value of

�XY specified by p is replaced by the value of the right hand side of the restriction

equation for �XY at p. Nothing else is changed. This yields a new prestate p′

which results from p by the adaptation of �XY .

The adaptation of a directional at a prestate p does not lead to a different

prestate, unless the directional is maladjusted at p. Nevertheless it is convenient to

define the adaptation operation in a way which permits its application to adjusted

directionals.
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Dampening: This operation is only applied to immature univalued maladjusted

non-zero tendencies ∂XY . At a prestate p let ∂XY be such a tendency. Damp-

ening means that ∂XYR is changed to zero. Nothing else is changed. This yields

a new prestate p′ which results from p by dampening of ∂XY .

Confirmation: This operation is only applied to loose adjusted directionals.

Confirmation of a loose adjusted directional at a prestate p always changes the

confirmation status of the directional from L to F . Only in the case of a loose

adjusted split tendency ∂XY something else happens in addition to this. The

value of ∂XYR is changed to the value of ∂XYL. Nothing else is changed. This

yields a new prestate p′, which results from p by the confirmation of the

directional.

It is maybe useful to make some remarks about the interpretation of the three

operations. Consider a maladjusted tendency ∂XY at a prestate p. Obviously at p

the value t of ∂XYL is not in the value W of the right hand side of the confluence

for ∂XY . The change to the new value t′ = t @ W is the smallest one which

achieves adjustment. The interpretation of the adaptation operation in the case

of a system specific restriction is straightforward.

The operation of dampening removes the influence of a maladjusted univalued

non-zero tendency ∂XY on other directionals. ∂XYR is changed to zero but ∂XYL

remains unchanged. In terms of an underlying quantity this can be interpreted

as follows. The time derivative of the quantity decreases in absolute value with-

out changing its sign. Thereby the influence of this quantity on other variables

becomes insignificant.

Consider the following specific example. Suppose that at the prestate p we

have ∂XYL = ∂XYR = + but the right hand side of the confluence for ∂XY has

the value −. Assume that the right hand side keeps the value − up to the end

of the readjustment process. This means that eventually ∂XYL and ∂XYR have

to change their value to −. What does this mean in terms of the time derivative

of an underlying quantity? This time derivative decreases and must pass the

value 0 before it becomes negative. Before it reaches 0 it becomes so small that

its influence on other variables becomes practically zero. This is mirrored by the

operation of dampening. Later the time derivative becomes negative, but at first it

remains small in absolute value. This is captured by an adaptation of ∂XY which

changes ∂XYL to − but leaves ∂XYR at zero. As the time derivative continues

to decrease, it regains its influence on other variables. This is reflected by the

confirmation operation which finally changes the value of ∂XYR to −.

The example shows why it is reasonable to apply the operations of dampening,

adaptation and confirmation in this order and to separate them from each other.
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Admittedly the interpretation in terms of an underlying quantity is by no means

rigorous. It also does not really guide our definition of the readjustment process.

As we shall see mature tendencies are adapted and confirmed without dampening.

The main reason for applying dampening to immature univalued maladjusted

non-zero tendencies is the removal of their influence on other still undampened

maladjusted non-zero tendencies. However, the necessity of doing this cannot be

explained before the definition of the readjustment process has been given.

4.3. Starts

Let s be a state of a qualitative dynamic system Φ = (Λ,Γ, ρ, α) and let ω be

a transition cause pending at s. The readjustment process begins with a prestate

p0(ω, s) called the transition start for ω at s. In the following we first define

a prestate p0(s), the prestate of s, and then explain how the transition start

p0(ω, s) differs from p0(s).

The prestate p0(s) specifies the values of all scaled variables, lagged tendencies,

and system specific restrictions in the same way as s. For every current tendency

∂XY the left tendency ∂XYL and the right tendency ∂XYR in p0(s) have the same

value as ∂XY in s. Moreover all directionals have the confirmation status L.

We now must make a case distinction according to the nature of the transition

cause.

Shifts: ω = [XY → v] or ω = [XY → V ]

In this case the value of XY in p0(s) is changed to v or V , respectively. Nothing

else is changed. This yields p0(ω, s).

Lag extinction: ω = [∂XY −]

The value of ∂XY − in p0(s) is replaced by the value of ∂XY in p0(s). Nothing

else is changed. This yields p0(ω, s).

Tendency switch: ω = [∂XY → d]

Here we have p0(ω, s) = p0(s). If a tardy tendency switch ω is not feasible then

also the halfway switch µ = [∂XY → 0] needs to be examined (see 3.2). The

prestate p0(s) is also the transition start p0(µ, s) for the halfway switch.

Perturbance: ω = [∂XY : d]

Here, too, we have p0(ω, s) = p0(s).

In the case of a reanchoring or in other words, a shift or a lag extinction, the

readjustment process starting with p0(ω, s) is run in the original system Φ. This
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means that operations applied to ∂XY in a step of the process make use of the

confluence for ∂XY in Φ.

The other two transition causes involve changes of the confluence for ∂XY .

Thereby the base B of Φ is changed to a modified structure. In the case of a

tendency switch ω = [∂XY → d] this modified structure is the hypothetical base

Bω for ω or, after a tardy tendency switch ω has turned out not to be feasible, the

hypothetical base Bµ for the halfway switch µ = [∂XY → 0]. The readjustment

process starts with p0(s) in Bω as well as in Bµ.

In the case of a perturbance ω = [∂XY : d] the modified base is the auxiliary

base for ω (see 3.3). The readjustment process starting with p0(s) in the auxiliary

base Bω leads to a new state a0 of Bω. We call a0 the opening state of the aux-

iliary base Bω. From there on one may have to examine immediate transition

chains a0, a1, . . . , aM of states of Bω with the property that for m = 1, . . . ,M

the state am is reached by an immediate transition from am−1 to am in Bω. An

immediate transition chain is continued until a lasting state aM for Φω is reached.

(In chapter 5 it will be shown that this must happen eventually.) From there on

the system Φ is reentered.

The reentry happens at a prestate p0(aM ) called return start. The return

start is defined in the same way as p0(s) with aM instead of s. More about the

consequences of perturbances will be said in 5.8. The base B of Φ and the auxiliary

base have the same list of variables Λ, but the system of confluences and restriction

equations is different in the two basees. Therefore a state for the auxiliary base is

not necessarily a state for the original system. However, B and Bω have the same

space of prestates. Therefore a readjustment process in Bω can start with p0(s)

and a readjustment process in B can begin with a return start p0(aM ).

Return starts and the four kinds of transition starts have something in common,

captured by the following definition: A start is a prestate p0 with ∂XYL = ∂XYR

for every current tendency ∂XY and with the property that at p0 all directionals

are loose. It is clear that all transition starts and return starts are starts.

The readjustment process always begins with a start p0. It does not matter

for many properties of the readjustment process what kind of start this is.

It will be shown that a readjustment process beginning with a start p0 always

leads to a final prestate p′ at which ∂XYL = ∂XYR holds for all tendencies and

all directionals are adjusted and firm. Such prestates are called saturated. A

saturated prestate p′ generates a new state s′. This state s′ specifies the values of

all scaled variables, lagged tendencies and system specific restrictions in the same

way as p′ and in s′ each tendency ∂XY has the common value of ∂XYL = ∂XYR

in p′. We use the notation

s′ = g(p′)
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for the state s′ generated by p′.

4.4. The readjustment process

The readjustment process can be looked upon as an algorithm which is used to

compute a new state by a finite sequence of prestates p0, p1, . . . , pN . The sequence

begins with a start p0 and ends with a saturated prestate pN .

The steps from one prestate to the next are arbitrary within some limits.

Therefore the sequence is not uniquely determined. Nevertheless the last prestate

of the sequence is always the same. Of course, this will have to be proven after

the description of the readjustment process will be complete.

The steps of the readjustment process from prestate pk to prestate pk+1 are

the result of applying one of the three operations, or sometimes two of them one

after the other to one directional. The steps belong to one of the following five

categories, called activities:

1. Adaptation and confirmation of mature loose directionals

2. Dampening of univalued maladjusted non-zero tendencies

3. Adaptation of maladjusted tendencies

4. Confirmation of loose adjusted non-zero tendencies

5. Confirmation of loose adjusted zero tendencies

The first activity combines two operations, first adaptation and then confir-

mation of the same directional. Each of the other four activities involves only

one operation. The activities are listed in their order of priority. Adaptation and

confirmation of mature loose directionals has the highest priority, dampening of

maladjusted univalued non-zero tendencies has the second highest priority, and so

on.

Each activity is applied to a certain type of directional. We refer to this type

as the required type for this activity. The readjustment process begins with the

activity which has the highest priority among the activities for which at least one

directional of the required type is available. An activity is continued as long as

at least one directional of the type required for it is available. It does not matter

which one of these directionals is chosen for the next step. An activity stops as

soon as a prestate is reached at which no directionals of the required type for it

are available. If the prestate is saturated, the readjustment process stops there,

but otherwise it is continued with a new activity (the term “saturated” has been

explained at the end of 4.4). The new activity is the activity with the highest

priority among those for which at least one directional of the required type is

available.
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The definition of the readjustment process is now complete. The examination

of the properties of this process will begin in 4.6. The remainder of this section

will be devoted to the interpretation of the process.

For the sake of shortness we shall often refer to the k-th activity in the list as

activity k. It may seem to be peculiar that activity 1 is the only one applied to

current tendencies as well as system specific restrictions. The other four activities

exclusively concern current tendencies. Later it will become clear that due to the

anchoring requirement of 2.9 system specific restrictions are adapted and confirmed

during an initial phase of the process in which activity 1 is applied. System specific

restrictions are confirmed, before any other activity is taken up. Therefore these

other activities only involve current tendencies.

The following two questions suggest themselves:

(a) Why does the process stick to one activity as long as possible?

(b) Why are the priorities of the activities chosen in this way?

We first look at question (a). The process should treat all directionals of the

same type equally. We refer to this property as neutrality. Thus it should not

matter which maladjusted tendency is adjusted first. The sequence, in which an

activity is applied to the type of directionals required by it should not matter.

One could achieve neutrality by simultaneously applying an operation or a com-

bination of operations to all directionals of the same type. However, the theory

proposed here aims at a reconstruction of boundedly rational qualitative reasoning

on economic dynamics. From this point of view it is much more natural to apply

an operation or a combination of operations to one directional at a time. We refer

to this as the property of step simplicity. Sticking to the same activity as long

as possible is important for achieving neutrality as well as step simplicity.

If one thinks of the readjustment process as an idealized picture of a quick

dynamics which determines the transition from one state to the next, then neu-

trality seems to be an indispensable requirement. From this point of view one must

look at all changes determined during one application of an activity as essentially

simultaneous.

Admittedly there is a tension between the two interpretations of the readjust-

ment process. On the one hand it is supposed to be a reasonable description

of a quick dynamics and on the other hand it is a boundedly rational reasoning

procedure. However, a reasonable theory should try to do justice to both inter-

pretations. Therefore a prestate has been defined in such a way that it shows left

and right values for every current tendency and a confirmation status for every

directional. This together with the principle of sticking to one activity as long as

possible enables the readjustment process to combine the substantial requirement

of neutrality with the procedural one of step simplicity.
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We now turn our attention to question (b). If a directional is mature the right

hand side of the relevant confluence or restriction equation cannot be changed any

more by the readjustment process. The final value of a directional is fully deter-

mined once it has become mature. Therefore it makes sense from the procedural

point of view to give the first priority to activity 1.

In the course of the readjustment process a directional becomes mature as soon

as the repercussions of the initial imbalance have reached a point at which the right

hand side of the relevant confluence or restriction equation is fully determined.

In terms of the interpretation as a quick dynamics, it is reasonable to suppose

that such directionals move to their final value faster than others for whom the

influences on the right hand side have not yet settled down.

In a situation in which there are no mature directionals it is important to

remove the influence of all maladjusted non-zero tendencies before anything else

is done. Therefore dampening of univalued maladjusted non-zero tendencies has

the second highest priority. Of course, adaptation must come before confirmation.

Therefore adaptation of maladjusted tendencies has the third highest priority.

Confirmation of adjusted non-zero tendencies cannot disturb the adjustment

of other non-zero tendencies, but it may upset the adjustment of zero tendencies.

This will be shown in Section 4.6. One may say that being adjusted is a robust

property for non-zero tendencies but a fragile one for zero tendencies. Therefore

confirmation of adjusted non-zero tendencies is given priority over confirmation of

adjusted zero tendencies. This is reasonable in terms of both interpretations of

the readjustment process.

4.5. The flow chart algorithm

The definition of the readjustment process in the preceding section needs to

be complemented by a proof of the assertion that system specific restrictions are

adapted and confirmed in a first phase of the process in which activity 1 is pursued.

It also still needs to be shown that the process stops at a saturated prestate after a

finite number of steps. Once these facts will have been established it still remains

to be proven that the final saturated prestate is uniquely determined, even if this

does not hold for the sequence of prestates leading to it.

The task of providing these proofs will be facilitated by an alternative descrip-

tion of the readjustment process. This alternative description is the flow chart of

Figure 8. However, it is not obvious that the readjustment process fully agrees

with the algorithm shown by Figure 8. Therefore we shall refer to it as the flow

chart algorithm. It can then be proven that it is in fact nothing else than an

alternative description of the readjustment process. We now proceed to explain
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more fully in what sense the readjustment process and the flow chart algorithm

are equivalent.

A realisation of the readjustment process is a sequence p0, p1, . . . which

begins with a start p0 and conforms to the definition of the readjustment pro-

cess of Section 4.4 as far as the sequence can be continued. The realisation may

stop because it becomes impossible to continue the process or it may not stop at

all. Eventually it will be proven that a realisation always ends with a saturated

prestate, but this is not yet assumed by the definition of a realisation.

A realisation of the flow chart algorithm is defined in the same way as

a sequence p0, p1, . . . beginning with a start p0 and continued as long as possible

according to the rules given by Figure 8. It is one of our goals to prove that a

sequence p0, p1, . . . is a realisation of the readjustment process, if and only if it is

a realisation of the flow chart algorithm. This is meant by saying that the flow

chart algorithm is equivalent to the readjustment process.

In Figure 8 start and end are indicated by triangles. A rhomboid represents a

switch at which the question inside the rhomboid is asked. A rectangle represents

an operation. For the sake of simplicity we also refer to an adaptation immedi-

ately followed by a confirmation as only one operation, even if it is a combination

of two operations applied to the same directional.

Triangles, rhomboids and rectangles are numbered from 1 to 15. The numbers

are shown inside the polygons. Switches and operations will be referred to by

these numbers. In Figure 8 the activities correspond to pairs of a switch and an

operation. At the switch the question is asked whether there are directionals of

the type required for the activity. If the answer is YES then the activity is applied

to one of these directionals. It is arbitrary which one of them is chosen if there

are several such directionals. If the answer is NO then the algorithm moves to a

new activity.

Activity 1 is represented by switch 2 and operation 3 and later again by 10

and 11. Activity 2 is pursued at 4 and 5, activity 3 at 6 and 7, and activity 4 at 8

and 9. It will be shown later that at switch 12 only adjusted zero tendencies can

be loose. Therefore 13 and 14 represent activity 5.

In the same way as the readjustment process, the flow chart algorithm sticks

to the same activity as long as possible. However, it remains to be shown that

after the end of one activity the next one is the same in both procedures.

Notations: It will be convenient to introduce a notation for the prestates

reached at NO-exits of switches. For a fixed realisation p0, p1, . . . of the flow chart

algorithm let r(k,m) be the prestate at which the question of switch k is answered

by NO for the m-th time. The NO exits of switches 2, 4, 12, and 13 can be reached

only once but those of switches 6, 8, and 10 can be passed many times. Note
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START

1

YES

NO

Mld ?
2

ACMld3

YES

NO

munt ?
4

Dmunt5

YES

NO

mt ?
6

Amt7

YES

lant ?

NO
8

Clant9

YES

NO

Mlt ?
10

ACMlt11

mt ?

NO

YES

12

YES

NO

lt ?
13

Clt14

15

END

Abbreviations:
a adjusted D dampening n non-zero
A adaptation l loose u univalued
C confirmation M mature t tendency
d directional m maladjusted

The words “and” between A and C, “of a” after A, AC, C and D and
the plural remain unexpressed.

Questions always begin with the unexpressed phrase “Are there any”.

Examples:
Mld? stands for “Are there any mature loose directionals?”
ACMld stands for “Adaptation and confirmation of mature

loose directionals”.

Figure 8. Flowchart of the readjustment process

that the prestate at which the question of switch 12 is asked for the m-th time is

the prestate r(10, m). Only if at this prestate there are maladjusted tendencies

r(6, m+1), r(8, m+1) and r(10, m+1) are reached. Otherwise r(12, 1) is reached

and the algorithm moves to 13 and 14 and finally to the end at 15. We call the

r(k,m) the critical prestates of the realisation p0, p1, . . ..

In the remainder of this section two lemmas will be proven. The first one

shows that at r(2, 1) all system specific restrictions are firm. Therefore later

applications of activity 1 can be restricted to the adaptation and confirmation of
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loose tendencies. The second lemma shows that the algorithm stops after a finite

number of steps at triangle 15.

Lemma 1. All system specific restrictions are firm at the critical prestate r(2, 1)

of every realisation p0, p1, . . . of the flow chart algorithm.

Proof. According to the anchoring requirement of 2.9 all system specific re-

strictions are anchored. Let S0 be the set of all system pieces mentioned in part

A of the recursive definition of “anchored” (see 2.9). For k = 1, 2, . . . let Sk be

the set of all directionals such that the right hand side of the relevant confluence

or restriction equation satisfies the condition that only system pieces in the sets

S0, . . . , Sk−1 appear there, but with at least one of them in Sk−1. Obviously each

anchored directional belongs to at least one of the Sk.

Suppose that a system specific restriction is in Sk. Then none of the S1, . . . , Sk−1

can be empty. Obviously the directionals in S1 are mature at p0. It can be seen

immediately that activity 1 cannot stop before all anchored directionals have been

adapted and confirmed. �

Lemma 2. Every realisation p0, p1, . . . of the flow chart algorithm ends with a

last prestate pN .

Proof. It is clear that at every switch the question asked there can be an-

swered. If the answer is YES then the operation required by the algorithm can

be performed. The algorithm is feasible in this sense and therefore cannot stop

anywhere else than at triangle 15. However, we still have to exclude the possibility

that the sequence p0, p1, . . . is infinite.

We first show that none of the activities can go on forever. Activities 1, 4, and

5 involve the confirmation of loose directionals. Each confirmation reduces the

number of loose directionals and since there are only finitely many directionals in

the system any activity involving confirmation has to stop after a finite number

of steps.

Dampening is applied to maladjusted univalued non-zero tendencies. After

dampening such a tendency is not univalued any more. Therefore the number of

tendencies which can be dampened decreases with every dampening step. There-

fore activity 2 stops after a finite number of steps.

Activity 3 applies the adaptation operation to maladjusted tendencies only.

The application of this operation to one tendency never changes another adjusted

tendency to a maladjusted one. This is due to the fact that only the values of left

tendencies are changed by adaptation operations. An adjusted tendency remains

adjusted at the present value of its left tendency as long as nothing is changed on

the right hand side of its confluence. Therefore each step of activity 3 diminuishes
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the number of tendencies to which it can be applied. Consequently activity 3

cannot go on forever.

Later it will be shown that activity 5 is pursued at 13 and 14. However, this

fact is not yet available and we do not have to make use of it now. The activity

at 13 and 14 involves confirmation and what has been said about activities 1, 4,

and 5 applies here too.

In all cases the number of steps for which an activity can be continued is not

only finite but bounded by the number of tendencies in the system. However this

alone does not yet exclude the possibility that p0, p1, . . . is an infinite sequence. It

could happen that switch 12 is reached infinitely often. In view of the structure

of the flow chart this is the only possibility which is still open.

Suppose that switch 12 is reached and the answer to the question asked there

is YES. Then the algorithm continues with activity 3 until all tendencies are ad-

justed. If then the answer to at least one of the questions in switch 8 and switch 10

is YES, then the number of firm tendencies is increased. Since the number of ten-

dencies is finite it follows that this can happen only finitely often. Suppose that no

tendencies are confirmed after switch 8 or switch 10 has been reached. If this hap-

pens the prestate r(10, m) reached at the NO-exit of switch 10 is nothing else than

the prestate r(6, m). Therefore all tendencies are adjusted and all non-zero ten-

dencies are firm at r(10, m). Consequently the question of switch 12 is answered by

NO and all loose tendencies are adjusted zero tendencies at the NO-exit of switch

12. These tendencies are confirmed by operation 14 and the end at triangle 15 is

reached after a finite number of steps. Consequently the assertion of the lemma

holds. �

4.6. Further properties of the flow chart algorithm

Section 4.5 has shown that the flow chart algorithm stops after a finite number

of steps. Every realisation has the form p0, . . . , pN . However it has not yet been

shown that the state pN is saturated in the sense that all directionals are adjusted

and firm. This is important since otherwise the flow chart algorithm would fail

to determine a new state. We shall now prove several lemmas which will lead to

theorem 1. It is a part of the assertion of this theorem that pN is saturated.

Theorem 1 implies that a new state is determined by any realization p0, . . . , pN
of the flow chart algorithm beginning with an arbitrary start p0. This has the

consequence that the set of states cannot be empty. The example of a system

violating the anchoring requirement discussed in 2.9 reveals that this is by no

means trivial.

If beginning with an arbitrary start p0 the flow chart algorithm is applied

to the example of 2.9 then the realization becomes an infinite periodic cycle.



72 4. QUALITATIVE DYNAMIC SYSTEMS AND THEIR ANALYSIS

The anchoring requirement permits the proof of lemma 1. The system specific

restrictions become firm at rectangle 3 in the first phase of activity 1. Only on

this basis convergence of the flow chart algorithm has been obtained in 4.5.

Lemma 3. Let pk be a prestate in a realisation p0, . . . , pN of the flow chart

algorithm and let ∂XY be a split tendency at pk. Then ∂XYR = 0 holds at pk.

Proof. A maladjusted non-zero tendency can become a split tendency by

dampening at 5. A maladjusted univalued zero tendency can become a split

tendency by adaptation at 7. The flow chart shows that split tendencies cannot

arise in any other way since the operations 3, 9, 11 and 14 involve confirmation.

Tendencies to which they are applied become univalued. The right tendency ∂XYR

of a split tendency is zero, regardless of whether the split is due to the dampening

of a maladjusted non-zero tendency or the adaptation of a zero tendency. �

Lemma 4. Let p0, . . . , pN be a realisation of the flow chart algorithm and in

this sequence let pk and pk+1, be two consecutive prestates at which all system

specific restrictions are firm. Moreover let ∂XY and ∂UV be two adjusted non-

zero tendencies at pk and assume that pk+1 results from pk by confirmation of

∂XY . Then ∂UV remains adjusted at pk+1.

Proof. Suppose that ∂UVL has the value d at pk with d = + or d = −. Since

∂UV is adjusted at pk the value of the right hand side of the confluence for ∂UV

contains d. If ∂XY is univalued, then ∂XYR is not changed by the confirmation of

∂XY and the value of the right hand side of the confluence for ∂UV also remains

unchanged. Obviously in this case the assertion of the lemma holds.

Now assume that ∂XY is a split tendency. In view of lemma 3 we have

∂XYR = 0 for pk. Let f be the value of ∂XYL at pk. The confluence for ∂UV has

the form

∂UV = T @ R.

If ∂UV is not subject to a restriction this is valid with R = {−, 0,+}. Let Tk

and Tk+1 be the values of T at pk and pk+1 respectively. Since all system specific

restrictions are firm, R has the same value at pk and pk+1. It follows by lemma 3

that we have ∂XYR = 0. Moreover ∂UVL = d with d = + or d = − holds since

∂UV is an adjusted non-zero tendency at pk. The value of ∂XYR is changed from

0 to f with f = + or f = − by the confirmation of ∂XY . By assumption d is in

Tk @ R. We have to distinguish two cases

(1) Tk ∩ R = ∅

(2) Tk ∩ R 6= ∅

Consider case 1). We must have d ∈ R and R cannot have the value {−, 0,+}.

Suppose we have R = {0, d}. In this subcase of 1) we would have Tk = −d and
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therefore

Tk @ R = −d @ {0, d} = 0

contrary to the assumption that d is in Tk @ R. Therefore we must have R = d.

Consequently d must be in Tk+1 @ R regardless of the value of Tk+1. Therefore

the assertion holds in case 1).

Now consider case 2). In this case d belongs to Tk. Since Tk is a direction sum

(see 2.4) it must have either the value d or the value {−, 0,+}. The change of the

term ∂XYR from zero to f may enlarge the value of T in the first case for f = −d

or it may leave it unchanged: In both cases d belongs to Tk+1 and R. Therefore

∂UV is adjusted at pk+1 and the assertion of the lemma holds. �

Lemma 5. Let p0, . . . , pN be a realisation of the flow chart algorithm and in this

sequence let pk and pk+1 be two consecutive prestates, at which all system specific

restrictions are firm. Let ∂XY be a loose mature zero tendency at pk and assume

that pk+1 results from pk by adaptation and confirmation of ∂XY . Moreover let

∂UV be an adjusted non-zero tendency at pk. Then ∂UV remains adjusted at

pk+1.

Proof. In view of lemma 3 the tendency ∂XY is univalued at pk. Suppose

that at pk+1 we have ∂XYL = ∂XYR = 0, too. In this case nothing is changed on

the right hand side of the confluence for ∂UV and the assertion holds. From now

on we assume ∂XYL = ∂XYR = f with f = + or f = − at pk+1. As in the proof

of lemma 4 let d with d = + or d = − be the value of ∂UVL at pk. The same cases

1) and 2) as in the proof of lemma 4 have to be distinguished. The remainder of

the proof of lemma 5 is exactly the same as in the proof of lemma 4. �

Lemma 6. Let p0, . . . , pN be a realisation of the flow chart algorithm. At the

critical prestate r(8, 1) of p0, . . . , pN all non-zero tendencies are adjusted. A non-

zero tendency which is adjusted at r(8, 1) remains adjusted at all later prestates of

the realisation. Moreover at a critical prestate r(10, m) of p0, . . . , pN all non-zero

tendencies are firm and adjusted.

Proof. At r(8, 1) all maladjusted tendencies, if there were any have been

adapted by operation 7 and all loose adjusted non-zero tendencies have been con-

firmed by operation 9. There may be maladjusted tendencies at r(8, 1) but these

must be zero tendencies. Moreover all loose tendencies whether they are adjusted

or not must be zero tendencies. This does not change as long as activity 1 is pur-

sued at switch 10 and operation 11. Operation 11 may produce new adjusted and

firm non-zero tendencies but in view of lemma 5 no adjusted non-zero tendency

can become maladjusted by this. At r(10, 1) all non-zero tendencies are adjusted

and firm.
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If then the question at switch 12 is answered by YES all maladjusted ten-

dencies at r(10, 1) must be zero tendencies. Adaptation of these maladjusted zero

tendencies by operation 7 will change them into new adjusted non-zero tendencies,

but this will not disturb the adjustment of other non-zero tendencies, since only

left tendencies are changed by the adaptation operation. In view of lemma 4 the

confirmations at operation 9 also do not disturb the adjustment of other non-zero

tendencies. These confirmations may lead to new maladjusted zero tendencies,

but not to new maladjusted non-zero tendencies.

At r(8, m) with m > 1 the situation is essentially the same as at r(8, 1). This

can be seen by a simple induction argument. Therefore at r(10, m) with m > 1

all non-zero tendencies are adjusted and firm as asserted by the lemma and no

adjusted non-zero tendency has become maladjusted up to then.

When finally the question at switch 12 is answered by NO, all loose tendencies

are adjusted zero tendencies. Their confirmation by operation 14 cannot lead to

any new maladjusted tendencies and cannot disturb the adjustment of adjusted

ones, since nothing is changed on the right hand side of confluences. This com-

pletes the proof of the lemma. �

Remark. It is a consequence of the lemma that activity 5 is pursued at switch

13 and operation 14.

Lemma 7. Let p0, . . . , pN be a realisation of the flow chart algorithm. Every

system specific restriction �XY which is loose at a prestate pk of this sequence

and adjusted and firm at the next prestate pk+1 remains adjusted and firm at each

of the prestates pk+1, . . . , pN and has the same value at all these prestates.

Proof. In view of lemma 1 every system specific restriction is firm at r(2, 1).

Consider a system specific restriction �XY . At the last prestate pk at which

�XY is loose, it is mature and �XY is adapted and confirmed by operation 3

in the step from pk to pk+1. The right hand side of the restriction equation for

�XY and the value of �XY cannot be changed by later operations, since it is

fully determined by directionals which are firm at pk and later operations concern

only loose directionals. This shows that the assertion of the lemma is true. �

Lemma 8. Let p0, . . . , pN be a realisation of the flow chart algorithm. Every

tendency ∂XY which is loose at a prestate pk of this sequence and firm at the next

prestate pk+1 is adjusted and firm at each of the prestates pk+1, . . . , pN and has the

same value at all these prestates.

Proof. Consider first the case that ∂XY is adapted and confirmed in the

step from pk to pk+1. In this case ∂XY is mature at pk. This means that the right

hand side of the confluence for ∂XY is fully determined by directionals which are
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firm at pk and cannot be changed by later operations which concern only loose

directionals. For the same reason the value of ∂XY remains unchanged by later

operations. In the case considered up to now the assertion of the lemma holds.

Consider the case that a loose adjusted non-zero tendency ∂XY is confirmed by

operation 9. It follows by lemma 4 that confirmations of other non-zero tendencies

neither disturb the adjustment nor change the value of ∂XY . Lemma 5 shows

that the same is true for later applications of operation 11 to mature loose zero

tendencies. Lemma 6 shows that only zero tendencies can be maladjusted after

switch 8 has been left by the NO-exit for the first time. Moreover all non-zero

tendencies have been confirmed by operation 9 when this happens. Therefore

operation 11 is only applied to zero tendencies. The confirmation of adjusted zero

tendencies by operation 14 does not influence the right hand side of the confluence

for ∂XY either. We can conclude that the assertion also holds for adjusted non-

zero tendencies confirmed by operation 9.

It remains to look at the case of loose tendencies confirmed by operation 14.

After switch 8 is left by the NO exit all non-zero tendencies are confirmed and

no new loose ones can be produced by operation 11. Therefore at the NO-exit of

switch 12 all loose tendencies are adjusted zero tendencies. The values of right

hand sides of confluences are not changed by the confirmations of such tendencies.

Therefore the assertion of the lemma holds in this case, too. �

Theorem 1. Let p0, . . . , pN be a realisation of the flow chart algorithm. Then

pN is saturated (see Section 4.4). Moreover if a directional is for the first time

firm at a prestate pk then it is adjusted and firm at all prestates pk, . . . , pN and

has the same value at all these prestates.

Corollary 1. Every base B has at least one state. Moreover for every spec-

ification of values of scaled variables and lagged tendencies a base always has at

least one state with the specified values for these components.

Proof. In order to prove the assertion of the theorem (not the corrolary) it

is sufficient to show that every directional becomes firm at some prestate of the

sequence p0, . . . , pN . The remainder follows by lemma 7 and lemma 8.

It is a consequence of lemma 1 that each system specific restriction becomes

firm at some prestate. According to lemma 8 all non-zero tendencies are firm at

a critical prestate of the form r(10, m). Consider the prestate r(12, 1). Since all

non-zero tendencies are adjusted and firm at r(12, 1), any loose tendencies at this

prestate must be adjusted zero tendencies. All these tendencies are then confirmed

by operation 14. It remains to prove the corrolary.

For a given specification of scaled variables and lagged tendencies let p0 be the

prestate with the specified values for these components for which all left and right
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tendencies and all system specific restrictions have the value zero. Obviously p0
is a start. Let p0, . . . , pN be the realization of the flow chart algorithm beginning

with p0. It has been shown that pN is saturated. Therefore B has the state

generated by pN (see 4.3). This completes the proof of the corrolary. �

Comment. In 2.9 an example of a structure was presented which has all the

properties of a base with the exception of the anchoring requirement. As we have

seen this structure has no states. The corrolary of theorem 1 shows that the in-

clusion of the anchoring requirement into the definition of a base guarantees the

existence of states.

4.7. Equivalence of the readjustment process and the flow chart

algorithm

The results of the preceding section show that the flow chart algorithm is

feasible in the sense that it stops after a finite number of steps at a saturated

prestate. However, it is not yet clear whether the flow chart algorithm is equivalent

to the readjustment process in the sense that the two procedures have the same

realizations. Theorem 2 will give a positive answer to this question.

Theorem 2. The set of all realisations of the readjustment process is the set

of all realisations of the flow chart algorithm.

Proof. As has been pointed out before the flow chart algorithm as well as

the readjustment process stick to an activity as long as possible. It is sufficient

to show that after the end of an activity the two procedures begin with the same

new activity. In order to do this we will look at all points of the flow chart at

which a new activity may begin. It will be argued that a new activity is always

the one chosen by the readjustment process at the same prestate.

Consider a realisation p0, . . . , pN of the flow chart algorithm and the critical

prestates r(k,m) of this realisation. If there are mature directionals at p0 then

activity 1 is chosen at p0 by both procedures. Otherwise we have p0 = r(2, 1).

At r(2, 1) there are no mature directionals and activity 2 is chosen by both pro-

cedures, if there are maladjusted non-zero tendencies there. Otherwise we have

r(2, 1) = r(4, 1). Since new mature directionals can only arise by confirmations

of other directionals, there are no mature directionals at r(4, 1). Moreover there

are no univalued maladjusted non-zero tendencies. Activities 1 and 2 are not

applicable there and activity 3 is chosen by both procedures, if there are malad-

justed tendencies at this prestate. Otherwise we have r(4, 1) = r(6, 1). At r(6, 1)

activities 1, 2, and 3 are not applicable and both procedures move to activity

4 if there are loose adjusted non-zero tendencies at r(6, 1). Otherwise we have

r(6, 1) = r(8, 1).
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As long as there are no new confirmations there cannot be any new mature

loose tendencies. Therefore the opportunity for pursuing activity 1 does not arise

at r(4, 1) and r(6, 1). However the confirmations at operation 9 may have produced

new mature loose tendencies at r(8, 1). If this is the case then both procedures

choose activity 1 at r(8, 1). Otherwise we have r(8, 1) = r(10, 1).

Consider a critical prestate of the form r(10, m) reached by the realisation

p0, . . . , pN . It is clear that activity 1 is not applicable there. It follows by lemma 6

that activity 2 is not applicable at r(10, m), since all non-zero tendencies are ad-

justed and firm at this prestate. There may be maladjusted tendencies at r(10, m)

but these must be zero-tendencies. If this is the case then activity 3 is chosen by

both procedures at r(10, m). Otherwise we have r(10, m) = r(12, 1) and the NO-

exit of switch 12 is reached.

Suppose that activity 3 follows r(10, m). Then the next critical prestate is

r(6, m + 1). As at r(6, 1) activities 1, 2, and 3 are not applicable at r(6, m + 1)

and activity 4 is chosen there by both procedures, if there are loose adjusted

non-zero tendencies at r(6, m + 1). Otherwise r(6, m + 1) = r(8, m + 1) holds.

At r(8, m+ 1) both procedures choose activity 1, if new mature loose tendencies

have been produced by the confirmations during activity 4. Otherwise we have

r(8, m+ 1) = r(10, m+ 1).

It follows by induction on m that both procedures move to the same new

activity at all r(k,m) with k = 6, 8, and 10 as long as r(12, 1) is not reached.

At r(12, 1) all loose tendencies are adjusted zero tendencies and both procedures

move to activity 5. This completes the proof. �

4.8. Order independence

In the preceding section it has been shown that there is no difference between

the flow chart algorithm and the readjustment process. Therefore we can drop the

distinction between the two procedures. In the remainder of this book we shall not

talk about the flow chart algorithm any more, but only about the readjustment

process. However, the flow chart of Figure 8 is a more convenient description of this

process than the definition of 4.4. The flow chart embodies some properties which

are not apparent from the definition, e.g. the important result that the activity

of dampening maladjusted univalued tendencies can be pursued only once in a

realisation of the process. We shall continue to make use of the notion of the

critical prestates r(k,m) of a realisation p0, . . . , pN . In view of theorem 2 we may

think of p0, . . . , pN as a realisation of the readjustment process.

It still needs to be proven that the order in which an activity is applied to

directionals does not matter as long as it is compatible with the definition of the

readjustment process. This is what is meant by the term order independence. It
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will be shown that every realisation of the readjustment process starting with the

same start has the same critical prestates and leads to the same final saturated

prestate.

Lemma 9. Every realisation p0, . . . , pN of the readjustment process with the

same start p0 has the same critical prestate r(2, 1).

Proof. If there are no mature directionals at p0 we have p0 = r(2, 1). Ob-

viously the assertion holds in this case. From now on assume that at least one

directional is mature at p0. We now recursively define a sequence q0, q1, . . . of

prestates and a sequence D1, D2, . . . of sets of directionals. The prestate q0 is the

start p0. For k = 1, 2, . . . the set Dk is the set of all loose mature directionals

at qk−1 and qk is the prestate which results by adaptation and confirmation of all

directionals in Dk from qk−1. It is clear that the order of these adaptations and

confirmations does not matter.

For some positive integer K we must have DK 6= ∅ and DK+1 = ∅ since there

are only finitely many directionals which can be confirmed. Let D be the union of

the D1, . . . , DK . Obviously the sets D1, . . . , DK form a partition of D. At qK all

directionals in D are firm and all other directionals are loose. Obviously qK is the

critical prestate r(2, 1) for some realizations of the readjustment process, namely

those in which activity 1 is applied first to the directionals in D1, then to those in

D2 and so on. Let p′0, . . . , p
′

N with p′0 = p0 be a realization of this kind.

We show by induction on k that each directional ∂XY or �XY in Dk is

adapted and confirmed at the same value

tXY = ∂XYL = ∂XYR

or

RXY = �XY

in every realization p0, . . . , pN of the readjustment process. The assertion holds

for k = 1, since for a directional in D1 the right hand side of the confluence or

the restriction equation is fully determined at q0 and cannot change any more by

later adaptations and confirmations of other loose mature directionals.

Assume that the assertion holds for k = 1, . . . , s. We shall show that then

it also holds for k = s + 1. Consider a directional ∂XY or �XY in Ds+1. Let

p0, . . . , pM be a realization of the readjustment process, different from p′0, . . . , p
′

N .

Moreover let r′(2, 1) be the prestate which is reached in p′0, . . . , p
′

N at the NO -

exit of switch 2 and let L be the set of all directionals on the right hand side of

the confluence for ∂XY or the restriction equation for �XY which are firm at qs.

A directional which is firm at qs is in one of the sets D1, . . . , Ds. The assertion

holds for such directionals. Therefore the directionals in L have the same values at

r(2, 1) and r′(2, 1). These values fully determine the value of the right hand side
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of the confluence for ∂XY or the restriction equation for �XY . This right hand

side had already the same value when ∂XY or �XY was adapted and confirmed

in p0, . . . , pM or in p′0, . . . , p
′

N . Therefore the values tXY and t′XY of ∂XY or the

values RXY and R′

XY of �XY in r(2, 1) and r′(2, 1), respectively, must be equal.

Consequently the assertion also holds for k = s+ 1.

We can conclude that at the critical prestate r(2, 1) of every realization p0, . . . , pN
of the readjustment process beginning with the same start p0 a directional in D

always has the same value. The directionals in D are firm and those outside D

are loose at r(2, 1). Only tendencies can be outside D at r(2, 1). The application

of activity 1 to directionals in D has no influence on the left and right values of

tendencies outside D. Therefore the critical prestate r(2, 1) is the same one for

every realization p0, . . . , pN of the readjustment process beginning with the same

start p0. �

Lemma 10. Let pk be a prestate and let ∂XY be a maladjusted univalued non-

zero tendency at pk and let pk+1 be the prestate which results from pk by dampening

∂XY . Moreover let ∂UV be a maladjusted non-zero tendency at pk different from

∂XY . Then ∂UV remains maladjusted at pk+1.

Proof. Note that ∂UV may be univalued or split at pk. Let

∂UV = T @ R

be the confluence for ∂UV . In the case that ∂UV is not subject to any restriction

the confluence has this form for R = {−, 0,+}. Let Tk and Tk+1 be the values of T

at pk and pk+1, respectively. ∂XYR has the value d with d 6= 0 at pk and the value

0 at pk+1. If ∂XY does not appear in T then we have Tk = Tk+1. Assume that

∂XY appears in T . Since T is a direction sum, Tk must have one of the values

−, 0,+, and {−, 0,+}. In the case Tk = + or Tk = − we may have Tk+1 = 0.

For Tk = {−, 0,+} the change of ∂XYR from d to 0 may result in Tk+1 = + or

Tk+1 = −. Table 18 shows the possibilities for Tk and Tk+1.

Tk+1

− 0 + {−, 0,+}

Tk

− YES YES NO NO

0 NO YES NO NO

+ NO YES YES NO

{−, 0,+} YES NO YES YES

Table 18. Possibilities for Tk and Tk+1 in the proof of Lemma 10
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Let g be the value of ∂UVL at pk. Dampening ∂XY does not change ∂UVL.

Therefore g is also the value of ∂UVL at pk+1. Since ∂UV is a non-zero tendency

at pk we have g 6= 0.

A case distinction will be made according to the value of R. First consider the

case R = {−, 0,+}. In this case g cannot belong to Tk, since ∂UV is maladjusted

at pk. We must have Tk = −g or Tk = 0. It follows by Table 18, that for Tk = −g

we can have Tk+1 = −g or Tk+1 = 0 and for Tk = 0 only Tk+1 = 0. Therefore g is

not an element of Tk+1 and ∂UV is maladjusted at pk+1.

Now consider the case that R has only one element, a direction f . Since ∂UV

is maladjusted at pk it follows that g 6= f holds. Therefore ∂UV is maladjusted

at pk+1, too, regardless of the value of Tk+1.

We now look at the remaining two cases for R:

R = {0, g} and R = {−g, 0}.

Consider the case R = {0, g}. In this case Tk cannot contain g. We must have

Tk = −g or Tk = 0. In both cases Tk @ R has the value zero. It follows by Table 18

that for Tk = 0 we have Tk+1 = 0 and for Tk = −g either Tk+1 = −g or Tk+1 = 0.

This has the consequence that

Tk+1 @ R = 0

is true for all possible values of Tk+1. Obviously ∂UV is maladjusted at pk+1 in

this case.

Now consider the case R = {−g, 0}. Obviously g cannot be in Tk+1 @ R

regardless of the value of Tk+1. Therefore ∂UV is maladjusted at pk+1 in this case,

too. We can conclude that the assertion of the lemma holds. �

Lemma 11. Every realization p0, . . . , pN of the readjustment process beginning

with the same start p0 has the same critical prestate r(4, 1).

Proof. In view of lemma 9 we can restrict our attention to the dampening

steps between r(2, 1) and r(4, 1). Lemma 10 has shown that a maladjusted non-

zero tendency remains maladjusted if another one is dampened. However, it can

happen that an adjusted non-zero tendency becomes maladjusted if another one

is dampened.

Let D1 be the set of all maladjusted univalued non-zero tendencies at r(2, 1)

and let z1, be the prestate which results from r(2, 1) by dampening all tendencies

in D1, one after the other. It follows by lemma 10 that the order in which activity

2 is applied to the tendencies in D1 does not matter. z1 does not depend on this

order.

For k = 2, 3, . . . let Dk be the set of all univalued maladjusted non-zero ten-

dencies which are maladjusted at zk−1. For some positive integer K, the set DK
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will be empty, since there are only finitely many tendencies. Let D be the union

of all Dk with k = 1, . . . , K − 1. It is clear that at r(4, 1) all tendencies in D and

no others have been dampened. By lemma 10 the order in which this happened

does not matter. It follows that the critical prestate r(4, 1) is always the same.

This completes the proof of the lemma. �

Lemma 12. Let p0 be a start. Every realization p0, . . . , pN of the readjustment

process has the same critical prestate r(6, 1).

Proof. If there are no maladjusted tendencies at r(4, 1) then we have r(6, 1) =

r(4, 1) and the assertion of the lemma holds. Therefore from now on we assume

that there are maladjusted tendencies at r(4, 1). In view of lemma 9 and lemma 11

we can restrict our attention to the adaptation steps between r(4, 1) and r(6, 1).

Adaptation changes left tendencies only and therefore has no influence on the

right hand side of confluences of other variables. On the way from r(4, 1) to r(6, 1)

all tendencies which are maladjusted at r(4, 1) become adjusted. The tendencies

which are adjusted at r(4, 1) remain adjusted. The order in which activity 3 is

applied to the tendencies which are maladjusted at r(4, 1) does not matter. The

assertion of the lemma is true. �

Lemma 13. Every realization p0, . . . , pN of the readjustment process with the

same critical prestate r(6, m) reaches the same critical prestate r(8, m). This is

true for all m = 1, 2, . . . such that p0, . . . , pN has a critical prestate r(6, m).

Proof. At r(6, m) all tendencies are adjusted. It follows by lemma 4 that

a confirmation of a loose adjusted non-zero tendency by operation 9 does not

disturb the adjustment of other adjusted non-zero tendencies. Loose adjusted

non-zero tendencies at r(6, m) are split. This can be seen as follows. Some of

these tendencies become adjusted univalued zero tendencies by operation 7 and

for others the value of the left tendency may change to the opposite one. These

tendencies remain split after adaptation. Maladjusted zero tendencies become

adjusted split non-zero tendencies when operation 7 is applied to them.

On the way from r(6, m) to r(8, m) no adjusted non-zero tendency can become

maladjusted. However, if a loose split adjusted non-zero tendency is confirmed, its

right tendency changes from zero to a non-zero value. Thereby an adjusted loose

zero tendency may become maladjusted. All loose adjusted non-zero tendencies

become firm on the way to r(8, m) and new ones cannot arise. If thereby a loose

adjusted zero tendency becomes maladjusted, this happens to this tendency for

any order in which activity 4 is applied to the loose adjusted non-zero tendencies

at r(6, m). We can conclude that r(8, m) does not depend on this order. The

proof of lemma 13 is now complete. �
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Lemma 14. Every realization p0, . . . , pN of the readjustment process with the

same critical prestate r(8, m) reaches the same critical prestate r(10, m). This is

true for all m = 1, 2, . . . such that p0, . . . , pN has a critical prestate r(8, m).

Proof. Activity 1 is pursued on the way from r(8, m) to r(10, m). The proof

of lemma 9 can be transferred to this situation without any difficulty. Instead of

looking at the section p0, . . . , r(2, 1) of a realization of the readjustment process

we now have to look at a later section r(8, m), . . . , r(10, m). The proof becomes

simpler since all system specific restrictions are firm at r(8, m) and only mature

loose tendencies need to be considered. However it is not necessary to work this

out in detail. �

Lemma 15. Every realization p0, . . . , pN of the readjustment process with the

same critical prestate r(10, m) reaches the same critical prestate r(6, m+1) if there

are maladjusted tendencies at r(10, m).

Proof. Assume that there is at least one maladjusted tendency at r(10, m).

Then at r(10, m) the readjustment process moves to the new activity 3. The

situation is essentially the same as in the section between r(4, 1) and r(6, 1). What

has been said about the effects of adaptation steps in the proof of lemma 12 applies

also here. We conclude that the order does not matter, in which the maladjusted

tendencies at r(10, m) are adapted. At the end of activity 3 always the same

critical prestate r(6, m+ 1) is reached. The assertion of the lemma is true. �

Theorem 3. Every realization p0, . . . , pN of the readjustment process beginning

with the same start p0 has the same critical prestates and the same final prestate

pN .

Proof. It follows by the lemmas 9, 11 and 12 that the assertion holds for

r(2, 1), r(4, 1) and r(6, 1). Lemma 13 and lemma 14 show that the same is true for

r(8, 1) and r(10, 1). Moreover a simple induction argument based on the lemmas

15, 13, and 14 extends the result to all critical prestates of the form r(6, m), r(8, m)

and r(10, m) where m = 2, 3, . . . is an integer such that there are maladjusted

tendencies at r(10, m− 1).

As soon as there are no maladjusted tendencies at r(10, m) we have r(10, m) =

r(12, 1). It follows by lemma 6 that only adjusted zero tendencies can be loose

at r(12, 1). The confirmations at operation 14 do not change the values of left

and right tendencies. Nothing else than the confirmation status of adjusted zero

tendencies is changed on the way from r(12, 1) to the end at triangle 15. It is clear

that the order does not matter, in which activity 5 is applied to the loose adjusted

tendencies. Therefore the assertion of the theorem is true. �
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Remark. We did not show that the number N+1 of prestates is the same one

in every realization p0, . . . , pN . However, this is actually the case. Since r(2, 1)

is always the same prestate, the same number of adaptations and confirmations

must take place in every realization between p0 and r(2, 1). This argument applies

to any two consecutive critical prestates. As long as one activity is performed

every application of this activity is irreversible and the difference between the two

prestates determines the number of operations.

4.9. Main transitions

The procedures used for the determination of the result of a main transition

have been discussed in 3.2 and 4.3, but these explanations preceded the definition

of the readjustment process. Therefore, we have to recapitulate what has been said

before and to fill in details which may still be unclear. In this section attention is

restricted to main transitions. We shall look at perturbances in connection with

the definition of stability in chapter 5. In the following a case distinction between

reanchorings, i.e. shifts or lag extinctions, and other transition causes will be

made.

Reanchorings: In the case of a shift ω = [XY → v] or ω = [XY → V ] or

a lag extinction [∂XY −] at a state s the readjustment process is applied in the

original system Φ. Beginning with the transition start p0 = p0(ω, s) a realization

p0, . . . , pN of the readjustment process is constructed following the flow chart of

Figure 8. The final prestate pN does not depend on the particular realization

chosen (theorem 3) and is saturated. The new state reached by the transition is

the state

s′ = g(pN)

For the definition of the function g see 4.3.

Tendency switches: Let ω = [∂XY → d2] be a tendency switch of ∂XY from

d1 to d2 at a state s. The first step of the procedure (a second step may have

to follow) is the construction of a realization of the readjustment process in the

hypothetical base Bω beginning with p0 = p0(s). In the hypothetical base Bω the

confluence for ∂XY is replaced by

∂XY = d2

and nothing else in the base B = (Λ,Γ) of Φ is changed (see 3.2.3). Consider

a realization p0, . . . , pN in Bω. The final prestate pN does not depend on the

particular realization chosen. Moreover pN is saturated in Bω. This means that pN
satisfies all confluences and restriction equations of B with the possible exception

of the confluence for ∂XY . If pN also satisfies the confluence for ∂XY in B, then

pN is saturated in B and the new state reached by the tendency switch of ∂XY
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from d1 to d2 is given by

s′ = g(pN)

In the following it will be assumed that pN does not satisfy the confluence for ∂XY

in B. In this case the tendency switch ω of ∂XY from d1 to d2 is not feasible. If

either d1 = 0 or d2 = 0 holds then ω is not only not feasible but infeasible. In

this case no transition is caused by the switch ω. There is no edge of the tentative

transition diagram associated to ω. With this conclusion the investigation of ω

ends after the first step.

Now assume that ω is not feasible and d1 6= 0 and d2 6= 0 hold. Then ω

is a switch from − to + or from + to −. In order to find out whether ω is

semifeasible, we have to look at the halfway switch µ of ∂XY from d1 to zero at

s. In the hypothetical base Bµ for this halfway switch the confluence for ∂XY is

replaced by

∂XY = 0

and nothing else in the base B of Φ is changed. A realization p0, . . . , pM of the

readjustment process in Bµ beginning with p0 = p0(s) is constructed. The final

prestate pM does not depend on the particular realization chosen and is saturated

in Bµ. If pM also satisfies the confluence for ∂XY in B, then ω is semifeasible and

the new state reached by ω is given by

s′ = g(pM).

If pM fails to satisfy the confluence for ∂XY in B then ω is infeasible and causes

no transition. In this case the tentative transition diagram has no edge associated

to ω.

It will be shown in chapter 5 that immediate tendency switches are always fea-

sible. This facilitates the analysis of systems in which no tardy tendency switches

have rank 1 at any state.

4.10. Examples of readjustment process realizations

4.10.1. The upswing of the model of Table 4. Table 19 shows realizations

of the readjustment process for all transitions in the upswing of the cycle of the

model of Table 4, from the lower turning point b to the upper turning point c (see

Figure 3 in 2.5 and Table 13 in 3.8). The downswing is not presented here, since it

is a “mirror image” of the upswing with − and + interchanged, not only in states,

but also in the prestates of the readjustment process realizations.

Table 19 follows the following conventions for readjustment process ta-

bles which will also be used for other tables: The rows describe states or prestates.

In the case of a state the first column with the heading “comments” indicates which

state it is. The time order is from above to below. Horizontal lines separate states
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Comment PD �DE = ⊲PD ∂PD ∂DE ∂IN activity

state 1 b {0,+} + + −

[PD → L]

L {0,+} ++ ++ −−

{−, 0,+}F 1

−−F 1

++F 4

++F 4

state 2 L {−, 0,+} + + −

[PD → n]

n {−, 0,+} ++ ++ −−

{−, 0,+}F 1

00 F 1

++F 4

++F 4

state 3 n {−, 0,+} + + 0

[PD → H ]

H {−, 0,+} ++ ++ 00

{−, 0,+}F 1

++ F 1

++F 4

++F 4

state 4 H {−, 0,+} + + +

[PD → c]

c {−, 0,+} ++ ++ ++

{−, 0}F 1

++ F 1

+0 2

+0 2

00 3

−0 3

−−F 4

−−F 1

state 5 c {−, 0} − − +
Table 19. The readjustment process for the transitions in the up-
swing of the model of Table 4

from the readjustment processes before and after them. A readjustment process

begins with the transition start associated to the state above it and the transition

cause shown under comments beside it.
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The table has a column for each component of a state. In a row describing a

state an entry in one of these columns is the value of the associated component. In

a row describing a prestate the same is true for values of scaled variables or lagged

tendencies. An F at the right of a field in a column for a directional indicates that

the directional is firm at the prestate described by the row. In such a row the two

entries in a column for a current tendency refer to the values of the left tendency

(the first entry) and to the value of the right tendency (the second entry). The

values of system specific restrictions and left and right tendencies are not shown in

the rows following the one for the transition start, unless something has changed

in the column. Similarly the entry F is shown only once in a column. The last

column with the heading “activity” shows which activity has been applied in the

step of the readjustment process from the preceding prestate to the current one.

After these general explanations of the conventions for readjustment process

tables we now turn our attention to the specific example of Table 19. In the model

of Table 4 the system specific restriction and ∂IN are anchored. Therefore these

directionals are adjusted and at the beginning of each of the realizations shown

by Table 19. In the first three realizations between states 1 and state 4, the other

two tendencies are adjusted non-zero tendencies after these first two steps and are

then confirmed by activity 4.

The transition from state 4 to state 5 is slightly more involved. After the

first two steps of the readjustment process, the tendencies ∂PD and ∂DE are

maladjusted non-zero tendencies. They are dampened by activity 2. Thereby the

value of the right hand side of the confluence of ∂DE becomes negative. After

the adaptation of the two tendencies by activity 3 the tendency ∂DE becomes an

adjusted non-zero tendency. Therefore ∂DE is confirmed by activity 4. Thereby

∂PD becomes mature and is adapted and confirmed by activity 1.

We know by Table 5 that there is only one state with PD = c. One does not

need the readjustment process in order to determine the end result of the transition

caused by the shift of PD from H to c at state 4. However, the readjustment

process provides a dynamic picture of what happens at the upper turning point.

4.10.2. The upswing of the model of Table 6. Table 20 shows the up-

swing of the cycle for the model of Table 6 from the lower turning point at state 3

to the upper turning point at state 19 (see Figure 4 in 2.10 and Table 14 in 3.8.3).

Comment PD ∂PD− �DE ∂PD ∂DE ∂IN activity

state 3 b 0 {0,+} + + −

— continued next page

Table 20: The upswing of the model of Table 6
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Comment PD ∂PD− �DE ∂PD ∂DE ∂IN activity

[PD → L]

L 0 {0,+} ++ ++ −−

{−, 0,+}F 1

−−F 1

++F 1

++F 1

state 8 L 0 {−, 0,+} + + −

[∂PD−]

L + {−, 0,+} ++ ++ −−

{−, 0,+}F 1

−− F 1

++F 1

++F 1

state 9 L + {−, 0,+} + + −

[PD → n]

n + {−, 0,+} ++ ++ −−

{−, 0,+}F 1

00 F 1

++F 1

++F 1

state 12 n + {−, 0,+} + + 0

[PD → H ]

H + {−, 0,+} ++ ++ 00

{−, 0,+}F 1

++ F 1

++F 1

++F 1

state 17 H + {−, 0,+} + + +

[PD → c]

c + {−, 0,+} ++ ++ ++

{−, 0}F 1

++ F 1

00F 1

— continued next page

Table 20: The upswing of the model of Table 6
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Comment PD ∂PD− �DE ∂PD ∂DE ∂IN activity

00F 1

state 21 c + {−, 0} 0 0 +

[∂PD−]

c 0 {−, 0} 00 00 ++

{−, 0}F 1

++ F 1

−−F 1

−−F 1

state 19 c 0 {−, 0} − − +

— continuation

Table 20: The upswing of the model of Table 6

The conventions for readjustment process tables explained in 4.10.1 are valid

for this table. Only the upswing is shown since here, too, the downswing is the

“mirror image” of the upswing.

In the model of Table 6 all directionals are anchored. Therefore only activity

1 is used in the readjustment process. The directionals can always be adapted

and confirmed in the same order: �DE, ∂IN, ∂DE, ∂PD. It is clear that for each

transition the transition cause is the one with the highest priority according to

the general principles of 4.10.2 and Table 14.

4.10.3. The tendency switch of ∂DE at state 4 of the model of Table

4. In 3.8.2 an alternative priority ranking for the model of Table 4 has been

described. This priority ranking gives rank 1 to the tendency switch ω = [∂DE →

−] at state 4. A heuristic discussion of this switch has been presented in 3.2.

Table 21 shows a realization of the readjustment process for the transition caused

by this switch in the hypothetical base Bω beginning with the transition start for

ω at state 4. The conventions for readjustment process tables are valid for this

table, but complemented by a first column which indicates whether a state or a

readjustment process realization belongs to the hypothetical system base or to the

original one.

After state 4 a realization of the readjustment process in the hypothetical

base is shown by the table. This realization begins with the transition start for

ω = [∂DE → −] at state 4. It ends with a final prestate which generates a

state for the hypothetical base. At this state the original confluence for ∂DE is

satisfied. Therefore this state is also a state of the original system, namely state
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system
base

comment PD �DE ∂PD ∂DE ∂IN activity

original state 4 H {−, 0,+} + + +

hypo-
thetical

[∂DE → −]

H {−, 0,+} ++ ++ ++

{−, 0,+}F 1

++F 1

−−F 1

−−F 1

transition
result H {−, 0,+} − − +

original state 6

Table 21. The switch of ∂DE at state 4 of the model of Table 4

6. The tendency switch [∂DE → −] at state 4 is feasible and leads to state 6 as

the transition result.

In the hypothetical base all directionals are anchored. Therefore only activity

1 is applied in the readjustment process realization shown by Table 21.

4.10.4. The tendency switch of ∂AA at state 1 of system A. Table 22

shows the consequences of a tendency switch of ∂AA from − to + at state 1 of

system A. In the hypothetical base for [∂AA → +] a transition result is reached

which is not a state of system A. This switch is not feasible. Therefore the halfway

switch [∂AA → 0] is examined. The transition result reached in the hypothetical

system for the halfway switch fails to be a state of the original system. Therefore

the switch [∂AA → +] is neither feasible, nor semifeasible but infeasible.

The only activity used in Table 22 is activity 1. Though system A is not

anchored, the two hypothetical systems are anchored.

4.10.5. The tendency switch of ∂BA at state 1 of system B. Table

23 shows realizations of the readjustment process in the hypothetical bases for

[∂BA → −] and the halfway switch [∂BA → 0]. The tendency switch [∂BA → −]

is not feasible, but it turns out to be semifeasible. State 2 is the new state reached

if [∂BA → −] becomes effective.

As in the example of 4.10.4 only activity 1 is used since the two hypothetical

bases are anchored, even though system B is not anchored.
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system base comment ∂AA ∂AB activity

original state 1 − +

hypothetical
[∂AA → +]

−− ++

++F 1

−−F 1

transition result

+ −original not a state of the
original system

original state 1 − +

hypothetical
for the
halfway switch

[∂AA → 0]

−− ++

00F 1

00F 1

transition result

0 0original not a state of the
original system

Table 22. Infeasibility of the switch [∂AA → +] in system A
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system
base

comment �BB �BC ∂BA ∂BB ∂BC
activ-
ity

original state 1 {0,+} {−, 0} + + −

hypo-
thetical

[∂BA → −]

{0,+} {−, 0} ++ ++ −−

{0,+}F 1

{−, 0}F 1

−−F 1

00F 1

00F 1

transition
result {0,+} {−, 0} − 0 0

original not a state

original state 1 {0,+} {−, 0} + + −

hypo-
thetical
for the
halfway
switch

[∂BA → 0]

{0,+} {−, 0} ++ ++ −−

{0,+}F 1

{−, 0}F 1

00F 1

00F 1

00F 1

transition
result {0,+} {−, 0} 0 0 0

original state 2

Table 23. Semifeasibility of [∂BA → −] at state 1 of system B





CHAPTER 5

Permissibility and stability

5.1. Informal preliminary remarks

In Section 3.10 the notion of a permissible path has been introduced. The

definition was based on the concept of the tentative transition diagram which

shows all main transitions. However, the readjustment process had not yet been

explained in chapter 3. Nevertheless, it was necessary to speak about transitions

and transition diagrams in order to explain the reasons for the introduction of the

priority ranking as a part of a qualitative dynamic system.

Only now, after the definition and investigation of the readjustment process it

has become clear how the tentative transition diagram of a qualitative dynamic

system is determined. It is now possible to attack the question whether in the

tentative transition diagram of a qualitative dynamic system a permissible path

starting with a given state always exists, or in other words, whether the tenta-

tive transition diagram of a qualitative dynamic system is always well structured.

Theorem 5 will establish the fact that this is the case.

Another purpose of this chapter is the introduction of a definition of stability.

Roughly speaking, stability of a stationary state requires a return after at most

one tardy transition in the original system. Any number of immediate transitions

may happen in the auxiliary base and after the return in the original system. The

stability requirement must be satisfied for every expected perturbance.

The question of stability has been discussed heuristically for stationary states

of particular examples. It has been pointed out in 2.2 that the state 2 of the

model for Hume’s specie-flow mechanism should be considered to be stable by any

reasonable definition of the term. This example shows that one main transition

in the original system must be permitted on the way back to the stable state. In

3.3 the example of a positive perturbance of ∂DE at the stationary state 9 of the

simple business cycle model has been discussed heuristically.

The definition of stability in a qualitative dynamic system is a somewhat dif-

ficult problem. In quantitative systems definitions of stability involve arbitrarily

small ǫ-neighborhoods. It is not possible to mimick such definitions in the frame-

work of qualitative dynamic systems. The theory proposed here takes a different

approach.

93
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A perturbance is interpreted as an exogenous influence of short duration. This

exogenous influence is added to the main term of the confluence for the perturbed

tendency. Thereby the original base is changed to an auxiliary base. One has to

look at all “perturbance histories”. A perturbance history begins with a sequence

of immediate transitions in the auxiliary base, continued until a lasting state for

this base is reached. Then the perturbance history returns to the original system.

There a further sequence of immediate transitions may follow and then a tardy

transition and finally again a sequence of immediate transitions until a lasting state

of the original system is reached. This state is the “decisive” one. Stability requires

that this decisive state is always the original stationary state for all perturbance

histories initiated by an expected perturbance.

Even if in principle a huge number of perturbance histories may have to be

examined this does not seem to be the case in particular examples. In order to

show instability it is sufficient to find one perturbance history which does not lead

back to the stationary state. In the case of stability perturbance histories usually

are quite short and not too many of them need to be examined. At least this is

true for the examples presented in this book.

Theorem 4 will show that every immediate tendency switch is feasible. It will

be necessary to prove five lemmas before theorem 4 emerges as the final conclusion

of 5.3. The fact that an immediate tendency switch is always feasible is important

for the theory proposed here. Imagine a state at which some infeasible immediate

tendency switches are pending, but no other immediate transition causes. Such a

state could hardly be called “fleeting”.

Another problem investigated in this chapter concerns the possibility that at

one state several main transition causes are pending which lead to the same tran-

sition result. One may say that for a given state the relationship between a

transition cause pending at it and the transition result which it leads to, does not

always have an “inverse”. In this sense we speak of the “inverse transition prob-

lem”. The inverse transition problem is not really important for the development

of the theory proposed here. It is, however, of some interest, that an immediate

transition cause leading from one state to another is uniquely determined by these

two states. This is a consequence of lemma 21 which will be proven in 5.4.

Theorem 5 will exclude infinite tentative paths involving immediate transitions

only. This result is used in order to prove theorem 6 which shows that a tentative

transition diagram is always well structured in the sense that at every state a

permissible path starting with this state can be found. However, theorem 5 is

not only important for permissibility but also for the definition of stability. If

there could be infinite sequences of immediate transitions, then a return from the

auxiliary base to the original system would not be guaranteed.



5.2. READJUSTMENT RESULTS AND TRANSITION RESULTS 95

5.2. Readjustment results and transition results

Let p0, . . . , pN be a realization of the readjustment process in the system Φ =

(Λ,Γ, ρ, α) beginning with a start p0. In view of theorem 3 in 4.8 the final prestate

pN is uniquely determined by p0. We use the notation h(p0) for this final prestate.

The prestate h(p0) is called the readjustment result of p0 in Φ. Let p0(ω, s)

be the transition start for a shift or lag extinction ω pending at a state s. In

this case we also write h(ω, s) instead of h(p0(ω, s)) and we refer to h(ω, s) as the

readjustment result of ω at s.

Now assume that ω = [∂XY → d] is a tendency switch pending at a state s.

In order to determine whether ω is feasible at s one has to look at a realization

p0, . . . , pN of the readjustment process in the hypothetical base Bω = (Λ,Γω),

beginning with the transition start p0 = p0(s) (see 3.2 and 3.4). The final prestate

pN is saturated in Bω but not necessarily in Φ. The tendency switch ω is feasible

if and only if pN is saturated in Φ. If this is the case, then h(ω, s) denotes the

final prestate pN and h(ω, s) is called the readjustment result of ω at s.

Suppose that ω is a tendency switch from − to + or from + to − and that ω

is not feasible. Then we have to look at the halfway switch µ = [∂XY → 0]. Let

p′0, . . . , p
′

N be a realization of the readjustment process in the hypothetical base

Bµ, beginning with p′0 = p0(s). The final prestate p′N is saturated in Bµ but not

necessarily in Φ. The tendency switch ω is semifeasible at s, if and only if ω is

not feasible and p′N is saturated in Φ. If this is the case, then h(ω, s) denotes the

final prestate p′N and is called the readjustment result of ω at s.

A main transition cause is called realizable at s, if it is a shift, a lag extinc-

tion, or a feasible or semifeasible tendency switch pending at a state s. All main

transition causes with the exception of infeasible tendency switches are realizable.

We have defined a readjustment result h(ω, s) for every realizable main transi-

tion cause ω pending at a state s. We refer to the function h as the readjustment

result function. The readjustment result h(ω, s) is always a saturated prestate

for Φ.

In 4.3 the notation g(p) has been introduced for the state generated by a

saturated prestate. We now introduce the notation

z(ω, s) = g(h(ω, s))

The state z(ω, s) is called the transition result of ω at s and the function z is

the transition result function. Obviously z is defined for every realizable main

transition cause at a state s.
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5.3. The feasibility of immediate tendency switches

In the derivation of the results of this chapter it will be convenient to make

use of the notion of the anchorage level of an anchored directional. The anchorage

level is recursively defined as follows:

(i) The anchorage level of a directional is 1, if there are no other direction-

als on the right hand side of its confluence or restriction equation.

(ii) For k = 2, 3, . . . the anchorage level of an anchored directional is k if on

the right hand side of its confluence or restriction equation all directionals

have anchorage levels 1, . . . , k − 1 and at least one of these directionals

has the anchorage level k − 1.

In the hypothetical base Bω = (Λ,Γω) for a tendency switch ω = [∂XY → d]

pending at a state s, the tendency ∂XY is anchored and has anchorage level 1,

even if it is not anchored in the original system Φ. Therefore it is important

to distinguish between anchorage levels in Φ and Bω. However, it can be seen

immediately that every directional which is anchored in Φ is also anchored in Bω.

In the following we construct an anchorage realization p0, . . . , pN in Bω for

every tendency switch ω = [∂XY → d]. This realization begins with the transition

start p0 = p0(s), for ω at s and is continued as follows: First all directionals with

anchorage level 1 in Φ are adapted and confirmed, then those with anchorage level

2 in Φ, and so on. If ∂XY is anchored in Φ with anchorage level k, then the

realization is chosen in such a way that ∂XY is adapted and confirmed as the last

one among all directionals of anchorage level k in Φ. If ∂XY is not anchored in Φ,

then ∂XY is adapted and confirmed immediately after all directionals anchored

in Φ. It is clear that a realization with these properties can be constructed.

A tendency switch of anchorage level k is a tendency switch of an anchored

tendency with anchorage level k. If this tendency switch is immediate we speak

of an immediate tendency switch of anchorage level k.

Lemma 16. Let ∂XY be an anchored tendency with anchorage level k in Φ and

let ω = [∂XY → d] be a tendency switch pending at a state s in Φ. Moreover let

p0, . . . , pN be an anchorage realization for ω and let ∂XY be adapted and confirmed

in the step from pm to pm+1. Then the following statements hold:

1. At pm all system specific restrictions adapted and confirmed in the steps

from p0 to pm are firm and have the same values as at s.

2. At pm all tendencies different from ∂XY and anchored in Φ with anchor-

age levels of at most k are firm and for each of them the common value

of its left and right tendencies is its value at s.

3. The tendency switch ω is feasible at s.
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4. If ω is an immediate tendency switch then the number of immediate ten-

dency switches of anchorage level k in Φ pending at the transition result

z(ω, s) is smaller than the number of immediate tendency switches of an-

chorage level k in Φ pending at s.

Proof. The anchorage realization begins with p0 = p0(s). The hypothetical

base Bω and the base B of Φ differ only with respect to the confluence for ∂XY .

The tendency ∂XY does not appear on the right hand side of confluences or

restriction equations adapted and confirmed in the steps from p0 to pm. At p0 =

p0(s) all these directionals are adjusted in B and therefore also in Bω. It follows

that in no step from p0 to pm the value of a system specific restriction or a left or

right tendency is changed. Therefore the first two assertions of the lemma hold.

It is a consequence of the first two assertions that at pm all pieces on the right

hand side of the confluence for ∂XY have the same values as at s. Therefore ∂XY

is adjusted at pm not only in Bω but also in Φ. We can conclude that ω is feasible

at s. The third statement holds.

As we have seen above all directionals anchored in Φ with an anchorage level

of at most k are adjusted and firm at pm+1. Let ∂V W be a tendency anchored in

Φ with anchorage level k and assume that ∂V W is different from ∂XY . At pm
and therefore also at pN not only ∂V W has the same value as at s but also the

right hand side of the confluence for ∂V W . It follows that an immediate tendency

switch of ∂V W is pending at the transition result z(ω, s) if and only if it is also

pending at s. However, an immediate tendency switch of ∂XY is not pending at

z(ω, s). It follows that the number of immediate tendency switches of anchorage

level k is smaller at z(ω, s) than at s. Therefore the fourth statement holds. This

completes the proof of the lemma. �

Lemma 17. Let ∂XY be a tendency which is not anchored in Φ and let ω =

[∂XY → d] be a tendency switch pending at a state s. Moreover let p0, . . . , pN
be an anchorage realization for ω and let pm be the first prestate at which all

directionals anchored in Φ are firm. Then the following statements hold:

1. At pm all system specific restrictions are firm and have the same value as

at s.

2. At pm all tendencies which are anchored in Φ are firm and the left and

right tendency of each of them has the value of the tendency at s.

3. At pm all tendencies which are not anchored in Φ are loose and the left

and right tendency of each of them has the value of the tendency at s.

Moreover at pm all of them with the exception of ∂XY are adjusted in

Bω.
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Proof. According to the definition of an anchorage realization all directionals

anchored in Φ and no others are adapted and confirmed in the steps from p0 to pm.

Nothing else than the confluence for ∂XY is different in the hypothetical base Bω

and the base B of Φ. At p0 = p0(s) all directionals are univalued and adjusted in

B. With the exception of ∂XY they are also adjusted in Bω. The adaptation and

confirmation of directionals anchored in Φ therefore does not change the values of

system specific restrictions. Consequently the first statement holds. The same is

true for the left and right tendencies of variables whose tendencies are anchored

in Φ. Therefore the second statement holds.

Obviously the left and right tendencies of variables with tendencies not an-

chored in Φ are not changed in the steps from p0 to pm. With the exception of

∂XY the confluences of these tendencies in Bω are satisfied at s and therefore also

at p0(s) and pm. Consequently, the third statement holds. This completes the

proof of the lemma. �

Lemma 18. Under the assumptions of lemma 17 the tendency ∂XY is adapted

and confirmed in the step from pm to pm+1. In the steps from pm+1 to pN activities

are applied to tendencies not anchored in Φ and different from ∂XY and no other

directionals. Moreover the following two statements hold for k = m+1, . . . , N−1:

1. If ∂V W is an adjusted non-zero tendency at pk in Bω and an activity is

applied to ∂V W in the step from pk to pk+1 then this activity is either

activity 1 or activity 4.

2. If ∂V W is an adjusted non-zero tendency at pk in Bω to which no activ-

ity is applied in the step from pk to pk+1 and if the right tendency of a

tendency ∂TU in the main term of the confluence for ∂V W changes its

value from ∂TUR = 0 to ∂TUR = c with c 6= 0 in the step from pk to pk+1

then ∂V W is an adjusted non-zero tendency at pk+1 in Bω.

Proof. The assertions of lemma 18 before the two statements 1. and 2. are

immediate consequences of the definition of an anchorage realization and of lemma

17. The first statement follows by the fact that an adjusted non-zero tendency is

not of the required type for activities 2, 3, and 5. It remains to prove the second

statement.

First consider the case that the confluence for ∂V W has the form

∂V W = T

If ∂TUR changes its value from 0 to c in the step from pk to pk+1 then activity

1 or 4 is applied to ∂TU and the values of the right tendencies of all variables

other than TU remain unchanged. Let T0 and T1 be the values of T at pk and

pk+1, respectively and let b be the value of ∂V WL at pk. Since ∂V W is a non-zero

tendency at pk we have b 6= 0. The tendency ∂V W is adjusted at pk. Therefore
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b ∈ T0 holds. Since T is a direction sum either T0 = {b} or T0 = {−, 0,+} is true.

This yields

T1 = T0 + c =

{

b for T0 = b and c = b

{−, 0,+} else

Consequently b is an element of T1. It follows that ∂V W is an adjusted univalued

non-zero tendency at pk+1.

We now look at the case that the confluence for ∂V W has the form

∂V W = T @ R

In view of the first statement of lemma 17 the restriction R does not change its

value in the step from pk to pk+1. The proof for ∂V W = T works without any

essential change for the case R = {−, 0,+}. Therefore in the following we assume

that R has at most two elements. We shall show that in this case we either have

R = {b}

or

b ∈ T1 ∩ R

It is clear that b must be in R. Otherwise ∂V W would not be adjusted at pk.

Therefore R = {b} holds if R has only one element.

Suppose that R has two elements. Then we have R = {0, b}, in view of b ∈ R,

since R is a convex direction set. The result for T1 obtained for ∂V W = T

remains valid in the presence of a restriction of ∂V W . It follows that b is in the

intersection of T1 and R. Therefore either b is in the intersection of T1 and R

or we have R = {b}. In both cases b is in the value of the right hand side of

the confluence for ∂V W at pk+1. It follows that ∂V W is an adjusted non-zero

tendency at pk+1 in Bω. This completes the proof of the lemma. �

Lemma 19. Under the assumptions of lemma 17 let ω = [∂XY → d] be an

immediate tendency switch. Then the following two statements hold:

1. For k = m, . . . , N there are no maladjusted non-zero tendencies at pk in

Bω.

2. For k = m + 1, . . . , N a tendency ∂V W which is an adjusted non-zero

tendency at pk−1 in Bω is an adjusted non-zero tendency in Bω at the

prestate pk and the value of ∂V WL does not change in the step from pk−1

to pk.

Proof. We first show that the first statement holds for k = m. In view of the

second and third statement of lemma 17 there are no maladjusted tendencies at

pm with the exception of ∂XY . However ∂XY is a zero tendency at pm. Therefore

the first statement of lemma 19 holds for k = m.
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In the step from pm to pm+1 the tendency ∂XY is adapted and confirmed.

∂XYR changes from zero to d in this step. In view of the second statement of

lemma 18 all adjusted non-zero tendencies at pm are not only adjusted in Bω

at pm but also at pm+1. There is only one non-zero tendency at pm+1 which is

not an adjusted non-zero tendency at pm, namely ∂XY . The tendency ∂XY is

also adjusted at pm+1. Therefore the two statements of lemma 19 are valid for

k = m+ 1.

With this result as an induction start, we now prove by induction that the two

statements of lemma 19 hold. We show for k = m + 1, . . . , N − 1 that the two

statements of lemma 19 hold for k + 1 if they hold for k. Suppose that they are

valid for k. Consider a non-zero tendency ∂V W at pk. Since the first statement

holds for k it follows that ∂V W is adjusted at pk in Bω. Suppose that an activity

is applied to ∂V W in the step from pk to pk+1. Then this activity must be activity

1 or 4. Therefore ∂V W is adjusted and firm at pk+1. Moreover, these activites do

not change ∂V WL in the step from pk to pk+1. Therefore in this case the second

statement holds for k + 1.

Now assume that no activity is applied to ∂V W in the step from pk to pk+1.

Then an activity is applied to another tendency ∂TU . This can be one of the

activities 1, 3, 4, and 5, but not 2 since there are no maladjusted non-zero ten-

dencies at pk in Bω. For the same reason activities 1 or 4 cannot change the value

of ∂TUR from a non-zero direction to zero if ∂TU is a non-zero tendency at pk.

Activity 3 changes left values only. Activity 5 confirms loose adjusted zero tenden-

cies. It follows by lemma 3 in 4.6 that a zero tendency must be univalued, since

for split tendencies the right tendency is zero. Therefore confirmation of loose

adjusted zero tendencies changes neither left nor right tendencies. It follows that

the application of an activity to another tendency ∂TU may change the value of

∂TUR from zero to a value different from zero but never from a non-zero direction

to zero. The second statement of lemma 18 permits the conclusion that ∂V W

remains an adjusted non-zero tendency at pk+1 in Bω if no activity is applied to

∂V W in the step from pk to pk+1. Obviously in this case, the value of ∂V WL is

not changed in the step from pk to pk+1.

We have seen that the second statement holds for k + 1 if the two statements

hold for k. It remains to show that under this assumption the first statement is

valid for k + 1. Suppose that there is a non-zero tendency ∂RS at pk+1 which is

maladjusted in Bω. Then at pk this tendency ∂RS cannot be adjusted in Bω, since

the second statement of lemma 19 holds for k + 1 and it cannot be maladjusted

in Bω in view of the validity of the first statement for k. This is a contradiction.

It follows that the two statements of lemma 19 hold for k+1. This completes the

proof of the lemma. �
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Lemma 20. Under the assumptions of lemma 17 let ω = [∂XY → d] be an

immediate tendency switch. Then the following statements hold:

1. Let c with c 6= 0 be the value of a tendency ∂RS at s. Then

∂RSL = ∂RSR = c

holds at pN .

2. The immediate tendency switch ω = [∂XY → d] is feasible at s

3. At z(ω, s) the number of tendencies with values different from zero is

greater than at s

4. An immediate tendency switch ω1 = [∂PQ → d1] of anchorage level k in

Φ is pending at z(ω, s) if and only if it is pending at s.

Proof. It follows by the second and third statement of lemma 17 that at

pm the tendency ∂RS in the first statement of lemma 20 is adjusted in Bω and

that there ∂RSL and ∂RSR are equal to c. With the help of an easy induction

argument the second statement of lemma 19 yields the conclusion that not only

at pm but also at pm+1, . . . , pN the left and right tendencies of ∂RS are equal to

c. The first statement of this lemma is true.

Consider the confluence for ∂XY in Φ. The value of the right hand side of this

confluence at s must be {−, 0,+}, since otherwise no immediate switch of ∂XY

could be pending at s (see Table 9 in 3.1). A boundary restriction or a system

specific restriction R – if there is any – must have the value {−, 0,+} at s and the

same is true for the main term T of the confluence for ∂XY .

In view of the first statement of lemma 17 the restriction R – if there is any –

has the value {−, 0,+} at pm and therefore also at pm+1, . . . , pN . The immediate

tendency switch ω = [∂XY → d] is feasible at s if at pN the original confluence

for ∂XY is satisfied. This is the case, if the main term T has the value {−, 0,+}

at pN .

For the combination of values of scaled variables at s the main term T may

depend on the values of current tendencies. In view of the first statement of this

lemma, a tendency with a value different from zero at s has left and right tendencies

with this value at pN . Let T0 and T1 be the value of T at s and pN , respectively.

At pN some tendencies with zero values at s may be non-zero tendencies. Let D

be the sum of these “new” non-zero tendencies at pN . We have:

T1 = T0 +D

Since T0 is {−, 0,+} the value of T1 is {−, 0,+} regardless of what is the value

of D, since − and + are components of T0 and therefore of T1, too (see 2.4). It

follows that ω is feasible at s. The second statement of the lemma is true.



102 5. PERMISSIBILITY AND STABILITY

All tendencies with values different from zero at s are non-zero tendencies at

pN . However at pN there is at least one additional non-zero tendency, namely

∂XY with the value zero at s. The number of non-zero tendencies at pN is the

number of tendencies different from zero at the transition result z(ω, s). Therefore

the third statement of the lemma is true.

Consider a tendency ∂PQ, anchored in Q with the anchorage level k. In view

of the second statement of lemma 17 the tendency ∂PQ is firm at pm and therefore

also at pm+1, . . . , pN . Moreover at these prestates ∂PQL and ∂PQR have the same

value as ∂PQ at s. It follows that the value of ∂PQ at z(ω, s) is the same one as

at s. All pieces on the right hand side of the confluence for ∂PQ are anchored in

Φ. The argument about ∂PQ can also be applied to the current tendencies among

these pieces. Therefore at z(ω, s) not only ∂PQ has the same value as at s but

also the right hand side of the confluence for ∂PQ. It follows that an immediate

tendency switch ω1 = [∂PQ → d1] is pending at z(ω, s) if and only if it is pending

at s. The fourth statement of this lemma is true. This completes the proof of the

lemma. �

Theorem 4. Every immediate tendency switch pending at a state s is feasible.

Proof. The third statement of lemma 16 shows that the assertion is true

if ∂XY is anchored in Φ. The first statement of lemma 20 permits the same

conclusion for the case that ∂XY is not anchored in Φ. �

5.4. The inverse transition problem

Let Ω(s) be the set of all main transition causes pending at a state s and let

Z(s) be the set of all states s′ with

s′ = z(ω, s)

for an ω ∈ Ω(s). For a fixed s we may look at the restriction of the transition result

function z to Ω(s) as a mapping from Ω(s) onto Z(s). The question arises whether

this mapping has an inverse z−1(s′, s) which assigns a unique main transition

cause ω ∈ Ω(s) with s′ = z(ω, s) to every s′ ∈ Z(s). We call this the inverse

transition problem. As we shall see the answer to the question is no.

Let s be a fleeting state and let Ω0(s) be the set of all immediate transition

causes ω pending at s. Moreover let Z0(s) be the set of all s′ = z(ω, s) for an

ω ∈ Ω0(s). For a fixed fleeting state s we may look at the restriction of z to Ω0(s) as

a mapping from Ω0(s) onto Z0(s). Again the question arises whether this mapping

has an inverse z−1(s′, s) which assigns a uniquely determined immediate transition

cause ω ∈ Ω0(s) to every s′ ∈ Z0(s). We call this the inverse immediate

transition problem. As we shall see the answer to this question is yes.
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Even if the inverse transition problem is not important for the theory proposed

here, the positive answer to the inverse immediate transition problem is of some

minor interest for the development of our formalism. If s is a fleeting state and s′

is a state in Z0(s) then we can speak of the immediate transition cause ω leading

from s to s′ = z(ω, s). This facilitates some of the definitions.

Lemma 21 will show that the non-uniqueness of a transition cause ω with

s′ = z(ω, s) is a phenomenon of very limited scope. If for a given pair of states s

and s′ with s′ ∈ Z(s) two transition causes exist which lead from s to the transition

result s′, then each of the two transition causes must be a feasible non-anchored

tardy tendency switch. It is not excluded that in the tentative transition diagram

two nodes are connected by several links, but if this happens these multiple links

all represent feasible tardy tendency switches. Moreover these switches are not

anchored in Φ.

Lemma 21. Let ω1 and ω2 be two different realizable main transition causes

pending at the same state s. If we have

z(ω1, s) = z(ω2, s) = s′

then ω1 and ω2 are feasible tardy tendency switches at s which are not anchored

in Φ.

Proof. We first show that ω1 or ω2 cannot be a shift or a lag extinction. Such

transitions change values of scaled variables or lagged tendencies which remain

fixed in the readjustment process. If ω1 and ω2 are shifts or lag extinctions then

different components of s are changed and it is not possible that the same transition

result is reached. If ω1 is a shift or lag extinction and ω2 is a feasible tendency

switch then one component is changed by ω1 but in z(ω2, s) this component has

the same value as at s. We can conclude that z(ω1, s) and z(ω2, s) are different.

It remains to look at the case that ω1 and ω2 are tendency switches. We can

exclude the subcase in which ω1 and ω2 are switches of the same tendency ∂XY .

In this case ω1 and ω2 must be immediate switches in opposite directions which

by Theorem 4 lead to different transition results (see Table 9).

In the following it will be assumed that ∂XY and ∂V W are different tendencies

and that ω1 and ω2 have the forms

ω1 = [∂XY → d1]

ω2 = [∂V W → d2]

We first show that z(ω1, s) and z(ω2, s) are different if ω1 and ω2 are anchored in

Φ. Let k1 and k2 be the anchorage levels of ω1 and ω2, respectively. Without loss

of generality we can assume k1 ≤ k2. Let p0, . . . , pN be an anchorage realization
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for ω2 at s. It follows by the first two statements of lemma 16 that ω1 is still

pending at z(ω2, s). Therefore z(ω1, s) and z(ω2, s) are different.

Now assume that ω1 is anchored in Φ with anchorage level k, and ω2 is not

anchored in Φ. As before let p0, . . . , pN be an anchorage realization for ω2 at s

and let pm be the first prestate in p0, . . . , pN at which all anchored directionals are

firm. It follows by lemma 17 that at pm the tendency ∂XY is firm and the right

hand side of its confluence has the same value as at s. Consequently ω1 is pending

at z(ω2, s) but not at z(ω1, s). The two transition results are different.

In the following we assume that ω1 and ω2 are not anchored in Φ and that ω1

is an immediate tendency switch. This is the only remaining case. Let p0, . . . , pN
be an anchorage realization for ω1 and let pm be the first prestate at which all

anchored tendencies are firm. The tendency ∂XY is adapted and confirmed in

the step from pm to pm+1 and in this step the common value of ∂XYL and ∂XYR

changes from zero to d1.

Since ∂XY does not appear on the right hand side of confluences and restric-

tion equations for directionals anchored in Φ, the values of these directionals at

p0, . . . , pN are identical to their values at s. Moreover every tendency ∂TU which

is anchored in Φ is univalued at p0, . . . , pN .

Let ∂RS be a tendency different from ∂XY and not anchored in Φ. Let c be

the value of ∂RS at s. In the steps from p0, . . . , pm the tendency ∂RS is univalued

and ∂RSL = ∂RSR = c holds. For c 6= 0 it follows by the first statement of lemma

20 that ∂RSL = ∂RSR = c is valid at pN . Consequently ω2 is pending at z(ω1, s)

if the value of ∂V W at s is different from zero. In the following we assume that

the value of ∂V W at s is zero.

By what has been said about directionals anchored in Φ, at p0, . . . , pN the

restriction of ∂V W – if there is one – has its value at s. At s the main term of the

confluence for ∂V W has the value {−, 0,+}, since ω2 is a tendency switch (see

3.1). In this main term tendencies may appear as components whose values are

zero at s. If one of these tendencies changes its value from zero to − or +, the

value {−, 0,+} of the main term remains unchanged. In view of lemma 19 this

has the consequence that at p0, . . . , pN the main term of the confluence for ∂V W

has the value {−, 0,+} at p0, . . . , pN . We can conclude that at p0, . . . , pN the right

hand side of the confluence for ∂V W has the same value as at s. Consequently

∂V W remains adjusted at its value zero and is finally confirmed by activity 5.

Therefore ω2 is pending at z(ω1, s). The transition results z(ω1, s) and z(ω2, s) are

different. This completes the proof of the lemma. �

Remark. It follows by lemma 21, that for s′ ∈ Z0(s) the transition cause ω

with s′ = z(ω, s) is uniquely determined by s and s′. If an immediate transition
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cause ω leads from s to s′ then no other immediate or tardy transition cause ω′

leads from s to s′.

5.5. The system D

Table 24 shows the example of a very simple qualitative dynamic system with

two unscaled variables DA and DB and two states 1 and 2. It can be seen as

follows that this system D has no other states. In view of the confluence for ∂DA

the value of ∂DA cannot be − at a state unless the value of ∂DB is −, too.

Therefore state 1 is the only one at which ∂DA has the value −. Suppose that

∂DA has the value zero. Then it follows by the confluence for ∂DB that ∂DB

has the value +. This leads to the conclusion that ∂DA has the value + contrary

to the assumption that this value is zero. Therefore there is no state at which the

value of ∂DA is zero. Now assume that at a state ∂DA has the value +. Then

∂DB must have the value +. Obviously state 2 is the only one at which ∂DA has

the value +.

Variables

DA,DB unscaled

Confluences

∂DA = {+}+ ∂DB

∂DB = {+}+ ∂DA

States and priorities

state ∂DA ∂DB priority rank 1

1 − − [∂DA → +], [∂DB → +]

2 + + /

Table 24. The system D

In system D two feasible tardy tendency switches [∂DA → +] and [∂DB → +]

are pending at state 1. Each of the two switches leads to state 2 as the transition

result. The two switches are not anchored in D. Table 25 shows realizations of the

readjustment process in the hypothetical bases for these tendency switches.

The example of system D shows that the special case of two different transition

causes pending at a state and leading to the same transition result can occur.

However, lemma 21 puts narrow limits on the scope for this non-uniqueness of an

“inverse”.
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base comment ∂DA ∂DB activity

original state 1 − −

hypo-
thetical

[∂DA → +] −− −−

++F 1

++F 1

original state 2 + +

original state 1 − −

hypo-
thetical

[∂DB → +] −− −−

++F 1

++F 1

original state 2 + +

Table 25. Two tardy switches between two states

5.6. The finiteness of immediate transition chains

An immediate transition chain is a finite sequence s0, . . . , sM or an infinite

sequence s0, s1, . . . such that the following two conditions are satisfied:

(a) For m = 1, . . . ,M in the case of a finite sequence and for m = 1, 2, . . . in

the case of an infinite sequence the state sm is the transition result

sm = z(ωm−1, sm−1)

where ωm−1 is an immediate transition cause ωm−1 pending at sm−1.

(b) In the case of a finite immediate transition chain s0, . . . , sM the state sM
is a lasting state (see 3.5).

An immediate transition loop is a sequence s0, . . . , sM with sM = s0 such that

sm = z(ωm−1, sm−1)

holds for m = 1, . . . ,M where ωm−1 is an immediate transition cause pending at

sm−1.

In view of the remark after lemma 21 it is clear that in these definitions ωm−1

is uniquely determined by sm−1 and sm. We refer to this uniquely determined

immediate transition cause pending at sm−1 as the transition cause between sm−1

and sm. There is a close connection between the concepts of an infinite immediate

transition chain and an immediate transition loop. This connection is expressed

by the following lemma.
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Lemma 22. A qualitative dynamic system has an infinite immediate transition

chain, if and only if it has an immediate transition loop.

Proof. Consider an infinite immediate transition chain s0, s1, . . .. Since the

number of states is finite, one of the states in the chain, say sk, must be equal to a

later state sm in the chain. Obviously sk, . . . , sm is an immediate transition loop.

Now consider an immediate transition loop s0, . . . , sm. We can construct an

infinite immediate transition chain s′0, s
′

1, . . . by repeating the loop again and again:

s′kM+m = sm for m = 0, . . . ,M − 1 and k = 0, 1, . . .

This completes the proof of the lemma. �

Theorem 5. Every immediate transition chain is finite.

Proof. In view of lemma 22 it is sufficient to show that a qualitative dynamic

system has no immediate transition loop. The proof will be indirect. Let s0, . . . sM
be an immediate transition loop. Suppose that there is an immediate shift ωj−1

of a scaled variable XY between two states sj−1 and sj of the chain. Then the

value of XY is changed from a point to a range in the transition from sj−1 to sj .

No further immediate transition can change the value back from the range to the

point. Therefore an immediate transition loop cannot involve immediate shifts.

Every ωj−1 with j = 1, . . . ,M must be an immediate tendency switch.

Assume that at least one transition cause between two consecutive states of

the loop s0, . . . , sM is an anchored immediate tendency switch. Let k0 be the

lowest anchorage level of an anchored immediate tendency switch between two

consecutive states of the loop. Let ωj−1 between sj−1 and sj be an anchored

immediate tendency switch with anchorage level k0. For i = 0, . . . ,M let µi be the

number of anchored immediate tendency switches with anchorage level k0 pending

at si. It follows by the fourth statement of lemma 16 that we have µj < µj−1.

It will now be argued that for every i = 1, . . . ,M with i 6= j we have µi ≤

µi−1. Suppose that the transition cause ωi−1 between si−1 and si is an anchored

immediate switch of a tendency ∂V W with anchorage level k. We have k ≥ k0.

In view of the first two statements of lemma 16 at pm, before ∂V W is adapted

and confirmed all other tendencies ∂TU with anchorage levels up to k are firm.

Moreover their values and those of the right hand sides of their confluences are

the same ones as at s. Therefore µi is smaller than µi−1 for k = k0 and equal to

µi−1 for k > k0.

Now assume that the transition cause ωi−1 between si−1 and si is an immediate

tendency switch which is not anchored. It follows by the fourth statement of lemma

20 that in this case we have µi = µi−1.
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A simple induction argument yields µj−1 < µj−1. Consequently an immediate

transition loop cannot involve anchored immediate tendency switches with an-

chorage level k0 and therefore no anchored immediate tendency switches at all.

Every ωi with i = 1, . . . ,M must be an immediate tendency switch which is not

anchored.

Let λi be the number of tendencies with values different from zero at si. It

follows by the third statement of lemma 20 that we have λi > λi−1 for i = 0, . . . ,M .

Obviously this is a contradiction. We can conclude that an immediate transition

loop does not exist. This completes the proof of the theorem. �

5.7. Existence of a permissible path starting at a given state

In this section it will be shown that the tentative transition diagram is well

structured or, in other words, that a permissible path can be found starting from

any given state.

Theorem 6. The tentative transition diagram of a qualitative dynamic system

is well structured.

Proof. The theorem asserts that a permissible path starting at s can be found

for every state s. Let s1 be a fixed arbitrary state. We first construct a special

tentative path starting at s1 and then show that this path is permissible.

The basic idea of this construction is avoiding unresolved shifts and lag extinc-

tions by making sure that every realizable main transition cause of positive rank

pending at a lasting state s is realized again and again, if the constructed path

turns out to be infinite. For this purpose these transition causes are lined up in

an arbitrary fixed order. Every time s is reached again, the next transition cause

in this order is realized.

Let L be the set of all lasting states. For every s ∈ L let J(s) be the number

of realizable main transition causes of positive rank pending at s. For each s ∈ L

with J(s) > 0 we attach one and only one of the numbers 1, . . . , J(s) to each

realizable main transition cause ω of positive rank pending at s. This number is

denoted by λ(ω, s). Let F be the set of all fleeting states. For every s ∈ F let ωs

be a fixed immediate transition cause of rank 1 at s.

We now construct the special tentative path mentioned above. This path may

turn out to be a finite sequence s1, . . . , sM or an infinite sequence s1, s2, . . .. The

next state s′ after a state s on the path is determined by

s′ = z(ωs, s) for s ∈ F

Consider the case of a state s ∈ L on the path. For J(s) = 0 the state s is

stationary and the construction of the path is not continued beyond s. Let s be

reached for the u−th time in the (m − 1)-th episode. Moreover let vu be the
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greatest non-negative integer with u ≥ vuJ(s) and let ωu be that realizable main

transition cause of positive rank pending at s for which

λ(ωu, s) = u− vuJ(s)

holds. The next state s′ after s on the path is

s′ = z(ωu, s) for s ∈ L with J(s) > 0

The tentative path is continued as long as possible. It cannot end with a state sM
unless a stationary state is reached at the M-th episode.

If the tentative path constructed in this way turns out to be finite, then no

main transition causes of positive rank are pending at the last state and therefore

the tentative path has no unresolved shifts or lag extinctions. In this case the

construction yields a permissible path. From now on we assume that the path is

infinite.

There is at least one state s ∈ L which is reached infinitely often by the path

s1, s2, . . .. This can be seen as follows. Suppose that the m-th episode is the last

one in which a state in L is reached. This would mean that sm+1, sm+2, . . . is an

infinite immediate transition chain contrary to theorem 5. Therefore at least one

s ∈ L is reached infinitely often. Let s′ be one of these states.

Suppose that ω is an unresolved shift or lag extinction of s1, s2, . . .. Since ω is

pending at all sm, sm+1, . . . from some m on, it must be pending at s′. However,

any main transition cause ω pending at s′ will again and again give rise to a

transition on the path. These transitions lead to a next state at which ω cannot

be pending. It follows that there cannot be any sm such that ω is pending at all

episodes of the path from sm on. Consequently s1, s2, . . . is a permissible path.

This completes the proof of the theorem. �

Remark (The rank of a system). It is a consequence of theorem 6 that the

tentative transition diagram always has a rank k∗ (see 3.10). From now on we

shall refer to this rank k∗ as the rank of the system. Similarly the transition

diagram derived from the tentative transition diagram will be called the transition

diagram of the system.

The algorithm described in the proof of theorem 6 determines a permissible path

starting from any given state but it is not suitable for the computation of the rank

of the system. The rank of the system is almost obvious in the simple examples

discussed in this book, but for big qualitative dynamic systems this may be quite

different. The development of an efficient algorithm for the computation of the

rank of a system would be desirable for applications to big systems. However, this

question is not further pursued in this book.
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5.8. Transitions due to perturbances

The auxiliary base Bω for a perturbance ω = [∂XY : d] with d = + or d = −

at a potentially stationary state s of B = (Λ,Γ) has been introduced in 3.3.1. This

auxiliary base is obtained by first replacing the main term T of the confluence for

∂XY by T + d and then applying some simplifying equivalent transformations

to T + d. The result is a new term TA which satisfies the conditions (c3), (c4),

(c6), and (c7) of 2.8 required for a main term of a confluence (see 3.3.1). Nothing

else than the main term of the confluence for ∂XY is different in Bω and B. In

particular, the new main term TA is accomodated to the same restriction ⊲∂XY

or �XY — if there is any — as the original main term T .

It has been explained that a perturbance ω = [∂XY : d] is thought of as a

temporary exogenous influence of short duration which adds a component d to

the main term of the confluence for ∂XY . As soon as such an influence becomes

effective the dynamic process leaves the original system and enters the auxiliary

base. The auxiliary base has a very short life time. As soon as the exogenous

influence stops to work, the dynamic process returns to the original system. Dur-

ing the short life time of the auxiliary base only immediate transitions can occur.

Nevertheless it is assumed that there is sufficient time for an arbitrarily long im-

mediate transition chain. This is based on the idea that immediate transitions are

practically instantaneous. In this section a formal description of the consequences

of a perturbance will be provided.

An auxiliary base is a base in the sense of the definition in 2.9 (see 3.3.1),

but it is not a full fledged qualitative dynamic system. It is not complemented

by a priority ranking. All immediate transition causes pending at a state of an

auxiliary base are treated as equally plausible. No perturbance assignment is

specified for an auxiliary base. Nevertheless transition results in an auxiliary base

can be determined with the help of the readjustment process in the same way as

in the original system.

The auxiliary base for ω at s has the same list of variables as the original

system. However, since the system of confluences and restriction equations is

different the states of the auxiliary base are usually not the same ones as those

of the original system. Nevertheless the space of prestates is the same one in the

original system and the auxiliary base. Moreover, a start in the original system is

also a start in the auxiliary base and vice versa.

In order to examine the consequences of a perturbance ω at s one has to

examine all possible reentry histories. The meaning of this term will now be

explained with the help of Table 26. This table shows symbols in the first column,

their names in the second one and the base to which they belong in the third one.
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Symbols Names Base

s stationary state
original

ω perturbance at s

p0 = p0(s) perturbance start

auxiliaryq0 = hω(p0) readjustment result of p0

a0 = g(q0) opening state of ω at s

a0, . . . , aM immediate transition chain

q = p0(aM) return start

originalp = h(q) readjustment result of q

e = g(p) reentry state

Table 26. Structure of a reentry history

A reentry history begins with a stationary state s of the original base and a

perturbance ω at this state. Then a readjustment process in the auxiliary base

begins, starting with the prestate p0 = p0(s). The prestate p0(s) is the perturbance

start for ω at s (see 4.3). The readjustment result reached from p0 = p0(s) in the

auxiliary base is denoted by hω(p0). The prestate q0 = hω(s) is saturated in the

auxiliary base Bω and therefore generates a state a0 = g(q0) of Bω. We call a0 the

opening state of ω at s.

The opening state a0 is the first state in an immediate transition chain a0, . . . , aM
for Bω. If a0 is lasting, then we have M = 0 and a0 is also the last state of the

chain. A transition cause η between two consecutive states of the chain am−1 and

am may be an immediate shift or an immediate tendency switch. In the case of an

immediate switch η the transition from am−1 to am involves a hypothetical base of

the auxiliary base, denoted by Bωη. In view of theorem 4 the immediate tendency

switch η is feasible at am−1. A readjustment process starting with p0(am−1) in

Bωη leads to the readjustment result denoted by h(am−1, η, ω). This prestate is

saturated in Bω and generates the state am of the chain.

The prestate q = p0(aM) is called the return start of the reentry history.

A readjustment process beginning with the return start q in the original system

leads to the readjustment result denoted by h(q). The prestate p = h(q) generates

the state e = g(p) of the original system. This state e is called the reentry state.

The reentry history ends with the reentry state.

Different reentry histories may differ with respect to the immediate transition

chain a0, . . . , aM in the auxiliary base. The definition of stability will require the
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examination of all possible reentry histories. The set of all reentry states which

can be reached after an expected perturbance ω ∈ α(s) at a stationary state s is

denoted by E(ω, s). The union of all E(ω, s) with ω ∈ α(s) is denoted by E(s)

and called the reentry state set of s. A reentry state e ∈ E(s) may be reached

by more than one reentry history and even after different expected perturbances

at s. We refer to a pair (s, e) such that s is a stationary state and e is a reentry

state in E(s) as a perturbance transition from s to e.

In the following the notion of the extended transition diagram will be explained.

The extended transition diagram shows all main transitions of the transition

diagram and in addition to this each perturbance transition from a stationary

state s to a reentry state e ∈ E(s).

Formally the extended transition diagram is a directed graph with some ad-

ditional features. The vertices stand for states and the edges represent possible

transitions. The edges are either main edges associated to main transitions of the

transition diagram or perturbance edges corresponding to perturbance transi-

tions from stationary states s to reentry states e ∈ E(s). A value is attached to

each main edge, the priority rank of the main transition cause for the represented

main transition.

5.9. Definition of stability

The meaning of stability in a qualitative dynamic system is not obvious: There

may be different ways in which stability of a stationary state against a perturbance

can be defined. It seems to be a minimal requirement that after the perturbance

every permissible path starting with a reentry state leads back to the stationary

state. However this would mean that one permits very long return paths which

may lead far away from the stationary state before they come back to it. The

stationary state of an economy would hardly be called stable, if a perturbance

creates strong fluctuations lasting for a long time even if the economy eventually

comes back to this state. Therefore our theory takes the point of view that not

only every permissible path starting with a reentry state should return to the

stationary state, but that in addition to this there should be at most one tardy

transition on every path of this kind.

The example of the model for Hume’s specie-flow mechanism shows that at

least one tardy transition must be permitted. However, the question arises why

just one and not two or three tardy transitions should be permissible. The answer

is that intentionally the most stringent definition is chosen which still seems to

be reasonable. One may also look at a stability concept which does not require

more than the minimal requirement of a return to the stationary state on every

permissible path. The word “recaptor” will be used for a stationary state with this
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property. The notion of a recaptor can be looked upon as a very liberal stability

concept. However we reserve the word “stability” for the concept proposed here,

in order to avoid terminological confusion. Nevertheless one can speak about

alternative concepts under different names.

We now turn our attention to more formal definitions. A stationary state s

is escapable by a perturbance ω pending at s, if for at least one reentry state

e ∈ E(ω, s) a permissible path starting with e exists in the transition diagram

such that this path does not lead back to s. A stationary state s is a recaptor,

if s is not escapable by any expected perturbance ω ∈ α(s).

A stationary state s is destabilizable by a perturbance ω pending at s, if for

at least one reentry state e ∈ E(ω, s) a permissible path starting with e exists in

the transition diagram, such that this path does not lead back to s after at most

one tardy transition. (This does not exclude many immediate transitions on the

path.) A stationary state s is stable if it is not destabilizable by any expected

perturbance ω ∈ α(s).

A stationary state s is unreachable after a perturbance ω pending at s,

if in the transition diagram every permissible path starting with a reentry state

e ∈ E(ω, s) never comes back to s. A repulsor is a stationary state s which is

unreachable after every expected perturbance ω ∈ α(s).

The notion of a repulsor describes the strongest form of instability one can

imagine. A stationary state is unstable if it is not stable. An unstable stationary

state is not necessarily a repulsor. It may even be a recaptor.

Note that in the definitions above all paths are permissible paths in the tran-

sition diagram. There may be more permissible paths in the tentative transition

diagram. However, such additional permissible paths are excluded from consid-

eration. The transition diagram is also different from the extended transition

diagram. Only main transitions appear in the transition diagram. In the ex-

tended transition diagram a path starting at a stationary state s may lead back

to s via a perturbance ω′ at another stationary state.

5.10. Examples of stability and instability

In this section we will look at questions of stability and instability for the

first three examples (not the systems A to D) of qualitative dynamic systems

considered up to now.

5.10.1. Hume’s specie flow mechanism. This model has been introduced

in 2.1 and 2.2. In 3.8.1 the model has been complemented by a priority ranking and

a perturbance assignment. The only stationary state is state 2 and the expected

perturbances at this state are [∂GO : −] and [∂GO : +]. In the following we
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examine the consequences of the perturbance

ω = [∂GO : +]

at state 2. As we have seen in 3.3.1 the confluence for ∂GO in the auxiliary base

for this perturbance is as follows:

∂GO =















{−, 0,+} for TR = D

+ for TR = b

+ for TR = S

Table 27 shows the reentry history – there is only one – after the perturbance ω at

state 2 and the subsequent return to the stationary state 2 by the tardy transition

caused by [TR → b]. The table follows the conventions for readjustment process

tables (see 4.10.1 and 4.10.3). The only activity used is activity 1. Therefore the

column “activity” is left out.

At the perturbance start TR has the value b and all tendencies are univalued

zero tendencies. The right hand side of the confluence for ∂GO in the auxiliary

base has the value + for TR = b. Therefore activity 1 applied to ∂GO yields

∂GOL = ∂GOR = +. At the opening state a0 the immediate shift [TR → D]

is pending. No other immediate transition cause is pending at a0. Therefore the

immediate transition chain continues with the immediate shift of TR from b to D.

For TR = D the right hand side of the confluence for ∂GO in the auxiliary base

has the value {−, 0,+}. Activity 1 yields ∂GOL = ∂GOR = +. The transition

result is the state a1 for the auxiliary base. This state is lasting. Therefore it

gives rise to the return start q = p0(a1). A realization of the readjustment process

beginning with the return start q in the original system leads to state 1 as the

reentry state.

The tardy shift ω1 = [TR → b] is the only main transition cause pending at

state 1. A realization of the readjustment process in the original system beginning

with the transition start for ω1 at state 1 leads back to the stationary state 2.

There is only one permissible path starting with the uniquely determined reen-

try state and this path returns to the stationary state 2 after just one tardy tran-

sition. It follows that state 2 is not destabilizable by a positive perturbance of

∂GO.

The case of a negative perturbance of ∂GO is analogous. Essentially the same

analysis can be applied to this case. The stationary state 2 is not destabilizable

by a negative perturbance of ∂GO either. Therefore the stationary state 2 of the

model is stable.
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As has been explained in 3.8.1 exactly one transition cause is pending at each

of the two non-stationary states 1 and 3, namely a tardy shift to state 2. These

shifts have priority rank 1. Therefore the transition diagram has rank 1.

Figure 9 shows the extended transition diagram for the model of Hume’s specie

flow mechanism. State numbers are indicated in the rectangles representing the

nodes. On the right of the figure a vertical scale line has been drawn. This scale

line has a height interval for each value of TR, the only scaled variable of the

system. If in the figure the height of a rectangle falls into the height interval for

a value of TR then TR has this value at the state represented by the rectangle.

These conventions for figures representing extended transition diagrams

will be used in the remainder of this chapter and in chapter 7.

3

2

1

sh

sh pert

pert

D

b

S

Figure 9. The extended transition diagram for Hume’s specie flow mechanism

Abbreviations

pert perturbance
sh tardy shift

5.10.2. The simple business cycle model of Table 4. This model has

been introduced in 2.5. A priority ranking and a perturbance assignment has

been specified by Table 13 in 3.8.2. The only stationary state is state 9. The

expected perturbances at state 9 are [∂IN : +] and [∂IN : −]. In the following

we examine the consequences of the perturbance

ω = [∂IN : +]

at state 9. In the auxiliary base Bω the confluence for ∂IN is as follows:

∂IN =















{−, 0,+} for PD = b, L

+ for PD = n

+ for PD = H, c
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The only reentry history for ω at state 9 is shown by Table 28. In the first two

steps of each of the three realizations of the readjustment process in this table

the anchored directionals �DE and ∂IN are adapted and confirmed. In the first

realization leading to the opening state a0 a situation arises in which ∂DE is a

maladjusted zero tendency whereas ∂PD is an adjusted zero tendency. Therefore

first activity 3 and then activity 4 is applied to ∂DE. Since ∂PD is a zero tendency

activity 4 cannot be continued. In the last step ∂PD is mature and can be adapted

and confirmed.

At the opening state the immediate shift [PD → L] and no other immediate

transition cause is pending. This immediate shift has priority rank 1 at a0. The

transition caused by [PD → L] leads to the state a1 of the auxiliary base. Here it

is important that at p0(a0) the right hand side of the confluence for ∂IN in Bω has

the value {−, 0,+}. Therefore the equation ∂INL = ∂INR = + is not changed by

the adaptation and confirmation of ∂IN .

The state a1 is lasting. Therefore a return to the original system follows after

a1. The realization of the readjustment process in the original system beginning

with the return start p0(a1) leads to state 8, the reentry state, as the transition

result. State 8 is a state of the cycle (see Figure 3 in 2.5). Every permissible path

starting in the cycle remains in the cycle forever. It follows that state 9 is not

stable and even unreachable after ω.

The case of a negative perturbance of ∂IN at state 9 is analogous. Table 29

shows the reentry history for [∂IN : −]. This table is completely parallel to Table

28. State 4, the reentry state is also a state of the cycle. It follows that after an

expected perturbance no permissible path leads back to the state 9. Therefore

state 9 is not only unstable, but also a repulsor.

In the model of Table 4 all main transitions have rank 1 (see Table 13 in 3.8.2).

Therefore the rank of the transition diagram of the model is 1. Figure 10 shows the

extended transition diagram. The conventions for figures representing extended

transition diagrams explained in 5.10.1 are used.

5.10.3. The model of Table 6. The modified simple business cycle model

has been introduced by Table 6 in 2.7. The priority ranking and the perturbance

assignment for this model have been specified by Table 14 in 3.8.3.

It has been pointed out in 2.9 and 4.10.2 that all directionals are anchored in

the model of Table 6. It can be seen without difficulty that this is also true for

all hypothetical and auxiliary bases as well as all hypothetical bases for auxiliary

bases. In these modifications directionals may be anchored which are not anchored

in the original system, but it is not possible that a directional which is anchored
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Figure 10. The extended transition diagram for the model of Table 4

Abbreviations

ish immediate shift
pert perturbance
sh tardy shift

in the original system loses the property of being anchored in one of these modi-

fications. Therefore the directionals can always be adapted and confirmed in the

following fixed order: �DE, ∂IN, ∂DE, ∂PD.

State 11 is the only potentially stable state of the model. As one can see in

Table 14, one or two main transition causes of rank 1 are pending at every other

state. No tardy tendency switch is pending at state 11. Therefore state 11 is ex

ante stationary. The negative, and positive perturbances of ∂IN are the expected

perturbances at state 11.

Tables 30 and 31 examine the consequences of the expected perturbances.

Since the model of Table 6 is fully anchored only activity 1 is used in the realiza-

tions shown in these tables.

Therefore the column “activity” is omitted in Tables 30 and 31 as well as in

the case of four other tables which will be discussed later. There is a uniquely

determined reentry history after each of the two perturbances. The reentry state

is state 8 in the case of [∂IN : +] and state 14 for [∂IN : −]. At these two states



118 5. PERMISSIBILITY AND STABILITY

a lag extinction of ∂PD− has rank 1 (see Table 14). These lag extinctions do not

lead back to state 11 but to the states 9 and 13, respectively (see Figure 4 and

4.10.2). Therefore the stationary state 11 is not stable.

However, the fact that the reentry state after an expected perturbance is in

the cycle does not permit us to conclude that the stationary state is a repulsor.

We cannot yet exclude the possibility that the transition diagram has rank 2 and

that a permissible path of rank 2 leaves the cycle and eventually returns to state

11. Therefore it will now be shown that the rank of the transition diagram is 1.

At each of the states 1, 3, 5, 8, 9, 12, 17, 21, 19, 14, 13, 10, and 5 of the

cycle (see Figure 4) exactly one main transition cause of rank 1 is pending. The

transition due to this cause leads to the next state of the cycle. At states 8 and

14 a tardy shift of PD to n is pending, which, however, does not stay unresolved,

since it becomes effective one step later (see Figure 4). Therefore a permissible

path of rank 1 begins at every state of the cycle.

Apart from the stationary state 11 there are seven states outside the cycle,

namely the states 2, 4, 6, 7, 15, 16, and 18. Of course, at state 11 a permissible

path of rank 1 begins which also ends at this state. It remains to show that at

each of the other 8 states outside the cycle a permissible path of rank 1 begins.

Tables 32 - 35 show all tentative paths of rank 1 beginning with one of the

eight states up to a state of the cycle.

Each of these paths leads to a state of the cycle after at most two steps. The

Tables 32 - 35 also show realizations of the readjustment process for transitions

along these paths. After a path of rank 1 has reached the cycle it runs through the

cycle again and again. Since no shift or lag extinction remains unresolved along

the cycle it is clear that all these paths are permissible. We can conclude that the

rank of the transition diagram is 1.

With the Tables 32 - 35 we have gained a complete overview over all paths

of rank 1. This is sufficient for drawing the transition diagram. Figure 11 shows

the extended transition diagram. This diagram permits the conclusion that the

stationary state is a repulsor.
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Figure 11. The extended transition diagram for the model of Table 6
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base comment TR ∂GO ∂DE ∂PR ∂IM ∂EX ∂TR

original state 2 b 0 0 0 0 0 0

auxiliary [∂GO : +] b 00 00 00 00 00 00

++F

++F

++F

++F

−−F

−−F

state a0 b + + + + − −

[TR → D]
immediate shift

D ++ ++ ++ ++ −− −−

++F

++F

++F

++F

−−F

−−F

state a1 D + + + + − −

original return start D ++ ++ ++ ++ −− −−

−−F

−−F

−−F

−−F

++F

++F

reentry state 1 D − − − − + +

[TR → b]
tardy shift

b −− −− −− −− ++ ++

00F

00F

00F

00F

00F

00F

state 2 b 0 0 0 0 0 0

Table 27. Return to the stationary state after [∂GO : +]
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base comment PD �DE ∂IN ∂DE ∂PD activity

original stationary state 9 n {−, 0,+} 0 0 0

perturbance n {−, 0,+} 00 00 00

[∂IN : +] {−, 0,+}F 1

++F 1

−0 3

−−F 4

−−F 1

auxiliary state a0 n {−, 0,+} + − −

[PD → L] L {−, 0,+} ++ −− −−

immediate shift {−, 0,+}F 1

++F 1

−−F 4

−−F 4

state a1 L {−, 0,+} + − −

return start L {−, 0,+} ++ −− −−

{−, 0,+}F 1

−−F 1

original −−F 4

−−F 4

reentry state 8 L {−, 0,+} − − −

Table 28. Destabilization by [∂IN : +] in the model of Table 4
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base comment PD �DE ∂IN ∂DE ∂PD activity

original stationary state 9 n {−, 0,+} 0 0 0

perturbance n {−, 0,+} 00 00 00

[∂IN : −] {−, 0,+}F 1

−−F 1

+0 3

++F 4

++F 1

auxiliary state a0 n {−, 0,+} − + +

[PD → H ] H {−, 0,+} −− ++ ++

immediate shift {−, 0,+}F 1

−−F 1

++F 4

++F 4

state a1 H {−, 0,+} − + +

return start H {−, 0,+} −− ++ ++

{−, 0,+}F 1

++F 1

original ++F 4

++F 4

reentry state 4 H {−, 0,+} + + +

Table 29. Destabilization by [∂IN : −] in the model of Table 4
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base comment PD ∂PD− �DE ∂IN ∂DE ∂PD

original state 11 n 0 {−, 0,+} 0 0 0

perturbance n 0 {−, 0,+} 00 00 00

[∂IN : +] {−, 0,+}F

++F

−−F

−−F

auxiliary opening state a0 n 0 {−, 0,+} + − −

[PD → L] L 0 {−, 0,+} ++ −− −−

immediate {−, 0,+}F

shift ++F

−−F

−−F

state a1 L 0 {−, 0,+} + − −

return start L 0 {−, 0,+} ++ −− −−

original {−, 0,+}F

−−F

++F

++F

reentry state 8 L 0 {−, 0,+} − + +

Table 30. Destabilization by [∂IN : +] in the model of Table 6
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base comment PD ∂PD− �DE ∂IN ∂DE ∂PD

original state 11 n 0 {−, 0,+} 0 0 0

perturbance n 0 {−, 0,+} 00 00 00

[∂IN : −] {−, 0,+}F

−−F

++F

++F

auxiliary opening state a0 n 0 {−, 0,+} − + +

[PD → H ] H 0 {−, 0,+} −− ++ ++

immediate {−, 0,+}F

shift ++F

−−F

−−F

state a1 H 0 {−, 0,+} + − −

return start H 0 {−, 0,+} ++ −− −−

original {−, 0,+}F

++F

−−F

−−F

reentry state 14 H 0 {−, 0,+} + − −

Table 31. Destabilization by [∂IN : −] in the model of Table 6
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base comment PD ∂PD− �DE ∂IN ∂DE ∂PD

state 2 b − {0,+} − + +

[PD → L] L − {0,+} −− ++ ++

immediate {−, 0,+}F

shift −−F

++F

++F

original state 7 L − {−, 0,+} − + +

[∂PD−] L + {−, 0,+} −− ++ ++

lag extinction {−, 0,+}F

−−F

++F

++F

state 9 (cycle) L + {−, 0,+} − + +

state 4 b + {0,+} − + +

[PD → L] L + {0,+} −− ++ ++

original immediate {0,+}F

shift −−F

++F

++F

state 9 (cycle) L + {0,+} − + +

Table 32. Paths of rank 1 into the cycle from states 2, 4, and 7
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base comment PD ∂PD− �DE ∂IN ∂DE ∂PD

state 20 c + {−, 0} + − −

[PD → H ] H + {−, 0} ++ −− −−

immediate {−, 0,+}F

shift ++F

−−F

−−F

original state 15 H + {−, 0,+} + − −

[∂PD−] H − {−, 0,+} ++ −− −−

lag extinction {−, 0,+}F

++F

−−F

−−F

state 13 (cycle) H − {−, 0,+} + − −

state 18 c − {−, 0} + − −

[PD → H ] H − {−, 0} ++ −− −−

original immediate {−, 0,+}F

shift ++F

−−F

−−F

state 13 (cycle) H − {−, 0,+} + − −

Table 33. Paths of rank 1 into the cycle from states 20, 15, and 18
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base comment PD ∂PD− �DE ∂IN ∂DE ∂PD

original state 6 L − {−, 0,+} − 0 0

hypothetical [∂DE → −] L − {−, 0,+} −− 00 00

immediate {−, 0,+}F

switch −−F

−−F

−−F

original state 5 (cycle) L − {−, 0,+} − − −

original state 6 L − {−, 0,+} − 0 0

hypothetical [∂DE → +] L − {−, 0,+} −− 00 00

immediate {−, 0,+}F

switch −−F

++F

++F

original state 7 ∗ L − {−, 0,+} − + +

Table 34. Paths of rank 1 into the cycle from state 6

∗State 7 leads to state 9 (see Table 32)
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base comment PD ∂PD− �DE ∂IN ∂DE ∂PD

original state 16 H + {−, 0,+} + 0 0
hypo-
theti-
cal

[∂DE → −] H + {−, 0,+} ++ 00 00

immediate {−, 0,+}F

switch ++F

−−F

−−F

original state 15 ∗ H + {−, 0,+} + − −

original state 16 H + {−, 0,+} + 0 0
hypo-
theti-
cal

[∂DE → +] H + {−, 0,+} ++ 00 00

immediate {−, 0,+}F

switch ++F

++F

++F

original state 17 (cycle) H + {−, 0,+} + + +

Table 35. Paths of rank 1 into the cycle from state 16

∗State 15 leads to state 13 (see Table 35)



CHAPTER 6

Reduction

6.1. The problem

It may happen that a qualitative dynamic system contains two variables, one

of which is just a duplication of the other. As an example consider the variable

DE in the model for Hume’s specie flow mechanism. We always have

∂DE = ∂GO

This suggests that the variable ∂DE is superfluous and can be eliminated. Elimi-

nation of ∂DE means that the confluence for ∂DE is removed from the system and

that ∂DE is replaced by ∂GO wherever ∂DE appears on the right hand side of

another confluence or a restriction equation. In the case of the model for Hume’s

specie flow mechanism the confluence

∂PR = ∂DE

is thereby changed to

∂PR = ∂GO

Since ∂DE does not appear on the right hand side of another confluence, the

confluences for ∂IM, ∂EX, ∂TR and ∂GO remain unchanged. Elimination of

∂DE leads to a “reduced system”. It is reasonable to expect that the analysis of

the reduced system leads to essentially the same result as that of the original one.

The tendency ∂DE is not more than an intermediate link between ∂GO and ∂PR.

It should not matter whether DE is explicitly modelled or not. The results of the

analysis should not depend on unimportant modelling details. This is actually the

case for the elimination of DE in the model for Hume’s specie flow mechanism.

However, it is by no means obvious, under which conditions a variable can be

eliminated without changing the results of the analysis.

In the next section the notion of a “removable” variable will be introduced. It

will be argued that the elimination of a removable variable amounts to a change of

unimportant modelling detail and that for other variables the same is not neces-

sarily true. It seems to be an indispensible requirement for a theory of qualitative

reasoning about economic dynamics that removable variables can be eliminated

without any adverse effects on the conclusions reached by the analysis. It is the

aim of this chapter to show that the theory proposed here meets this requirement.

129
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The elimination of removable variables can considerably simplify the analysis.

Successive eliminations of DE,PR,EX and IM in this order transform the model

for Hume’s specie flow mechanism to a system with just two variables, TR and

GO.

6.2. Removability and eliminability

6.2.1. Definitions. All definitions of this chapter refer to a fixed but arbi-

trary base B = (Λ,Γ) or to a fixed but arbitrary qualitative dynamic system

Φ = (Λ,Γ, ρ, α)

with this base. A confluence is called scale independent, if its right hand side

does not depend on values of scaled variables. A variable is called restricted, if

the main term of its confluence is subject to a boundary restriction or a system

specific restriction. Otherwise it is unrestricted. A variable is called restrictive

if its tendency, its boundary restriction, or its system specific restriction appears

on the right hand side of a restriction equation. Otherwise it is unrestrictive.

A variable is lag free, if its lagged tendency does not appear on the right hand

side of any confluence or restriction equation. A variable is perturbance free, if

for no potentially stationary state s a perturbance of the tendency of this variable

is in α(s). A confluence is monocausal, if its main term has only one component,

which may be a constant direction, a signed lagged tendency or a signed current

tendency.

A variable is called alone if it is the only one in the system. We say that the

variable RV is short looped if a tendency ∂XY appears in the main term of the

confluence for ∂RV and ∂RV appears in the main term of the confluence for ∂XY

or the restriction equation for �XY . (The letters R and V are the initials of the

words “removable” and “variable”.)

A variable RV is called removable in Φ if it satisfies the following eight

removability conditions:

(e1) The confluence for ∂RV is scale independent

(e2) The variable RV is unscaled

(e3) The variable RV is unrestricted

(e4) The variable RV is lag free

(e5) The confluence for ∂RV is monocausal

(e6) The variable RV is not alone

(e7) The variable RV is not short looped

(e8) The variable RV is perturbance free

A variable is called eliminable in B = (Λ,Γ) if it satisfies all removability condi-

tions with the exception of (e8). Whether the removability conditions (e1) to (e7)
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are satisfied or not depends only on the base B = (Λ,Γ) of Φ. However, a pertur-

bance free variable is defined by the property that for no potentially stationary

state s the tendency of this variable is in α(s). Therefore it does not only depend

on the base B but also on the perturbance assignment α whether (e8) is satisfied

or not.

In this chapter the main interest is the elimination of removable variables,

but many intermediary results stated as lemmas are more naturally formulated

and more easily derived as statements about eliminable variables. Since every

removable variable is also eliminable one gains valuable insights into removability

by the investigation of eliminability.

It will be important to distinguish between two kinds of eliminable variables.

An eliminable variable EV is a source if the confluence for ∂EV has one of the

following three forms:

(f1) ∂EV = ∂XY −

(f2) ∂EV = −∂XY −

(f3) ∂EV = d

where d is a constant direction. In view of (e4) the variable XY cannot be the

variable EV . An eliminable variable EV is a link if it has one of the following

two forms:

(f4) ∂EV = ∂XY

(f5) ∂EV = −∂XY

In both cases the variable XY whose tendency appears on the right hand side is

called the determinator of EV . In view of the removability conditions (e1), (e3),

(e4), and (e5) it is clear that an eliminable variable is either a source or a link.

Remark. A removable or eliminable variable EV need not be unrestrictive.

It is permitted that ∂EV appears in a restriction equation for a system specific

restriction �WZ, where WZ is not the variable EV . Of course, in this case WZ

cannot be the determinator of EV since otherwise EV would be short looped.

6.2.2. Interpretation of the removability conditions. An acceptable the-

ory of qualitative reasoning about economic dynamics should have the property

that the results of the analysis do not depend on arbitrary modelling details.

Whether a removable variable is explicitly modelled or not is often an arbitrary

modelling decision. Thus it is not essential for the model of Hume’s specie flow

mechanism whether the variable DE is explicitly modelled or not.

It will now be argued that variables which are not removable cannot be elimi-

nated or should not be eliminated. A scale dependent confluence embodies mod-

elling details connected to distinctions between combinations of values of scaled

variables. Such distinctions are usually essential features which cannot be removed
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without changing the character of the model. Therefore condition (e1) is required.

Obviously (e2), (e3), and (e4) have similar justifications.

As will be explained in more detail in the next section, elimination of an

eliminable variable EV means that first on the right hand side of every confluence

or restriction equation ∂EV is replaced by the right hand side of the confluence

for ∂EV . Then some equivalent transformations are applied to the main terms

of confluences and restriction equations. Thereby the main terms receive a form

which satisfies the requirements (c1) to (c10) on the structure of confluences and

restriction equations (see 2.8).

If the confluence for ∂EV is monocausal then the replacement of ∂EV by the

right hand side of its confluence is a substitution of one direction by another equal

direction. This is not the case if the main term of the confluence for ∂EV is a

sum of several components. The equality sign in a confluence means that the left

hand side is an element of the right hand side. In an algebraic equation left hand

side and right hand side are always equal, but this is not the case for a confluence

unless it is monocausal. Therefore it is necessary to require (e5).

If EV is alone, it cannot be eliminated, since by definition the list of variables

must be non-empty. Therefore (e6) is required. Suppose that EV satisfies (e1) to

(e6) but not (e7). Assume, for example that the confluence for ∂EV is ∂EV =

∂XY . If EV is short looped then ∂EV appears in the main term of the confluence

for ∂XY or in the restriction equation for �XY . Elimination of EV would result

in a confluence for ∂XY violating (c9) of 2.8 in the first case or in a restriction

equation for �XY violating (c10) in the second case. Therefore (e7) must be

required.

If a perturbance of an eliminable variable ∂EV is expected at a stationary

state s, then this is not an unimportant modelling detail. Therefore EV is not

considered to be removable unless it satisfies (e8).

6.3. Elimination

In this section it will be explained how the list of variables and the list of con-

fluences and restriction equations are changed by the elimination of an eliminable

variable. This is the first step towards the definition of a “reduced base after the

elimination of EV”.

Let EV be an eliminable variable. The reduced list of variables after the

elimination of EV is defined as follows: The list Λ′ contains all variables in the

list Λ with the exception of RV and no other ones. The scaled variables have the

same scales in Λ and Λ′. The list Λ′ is also referred to as the reduction of Λ

after the elimination of RV .
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The elimination of EV concerns only the main terms of confluences and re-

striction equations. The restriction to which a main term is accomodated remains

the same. It will now be explained how the main terms are changed.

Let R be the right hand side of the confluence for ∂EV and let WZ be a

variable which is different from EV . Let T be the main term of the confluence for

∂WZ or the main term of the restriction equation for �WZ. The result T0 of

substituting R for ∂EV in T is the expression obtained from T by replacing

∂EV by R and −∂RV by −R while all other components of T remain unchanged.

The result of substituting R for EV generally does not satisfy (c1) to (c10)

of 2.8 and therefore cannot serve as the main term after the elimination of EV .

Simplifying equivalent transformations have to be applied. Two of these transfor-

mations, the summation of constants and the deletion of variable components have

been already introduced in 3.3.1 in connection with the definition of the auxiliary

base for a perturbance. The elimination of an eliminable variable involves two

further simplifying equivalent transformations.

A constant component of an algebraic sum S will simply be called a constant

in S. Similary a zero in S is a constant component of S with the value zero. The

following four transformations, including the two introduced already in 3.3.1 are

aplied to expressions Ti appearing in a sequence leading from T0 to the new main

term T ′.

1. Summation of constants: If Ti has several constant components then

all of them are replaced by the convex direction set which is their sum

2. Deletion of zero: If Ti has at least one variable component and exactly

one constant component whose value is zero then this constant component

is deleted

3. Deletion of variable components: If Ti has at least one variable com-

ponent and exactly one constant component with the value {−, 0,+} then

all variable components are deleted

4. Deletion of duplicates: If Ti has doubly represented variable compo-

nents, then one component in every pair of equal components is deleted.

Each of the four transformations has a condition of applicability spelled out

by the if-phrase before the description of how Ti is changed. We say that a

transformation is applicable to Ti, if its applicability condition is satisfied. The

transformations are applied, one after the other in the order in which they are

listed above, each of them at most once, as far as they are applicable. The result

of this procedure is the reduction T ′ of T after the elimination of EV .

The reduced confluence for ∂WZ or the reduced restriction equation

for �WZ after the elimination of RV is obtained by replacing the main term

T of the concerning confluence or restriction equation by its reduction T ′ leaving
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everything else unchanged. The reduced list Γ′ of confluences and restriction

equations or the reduction of Γ after the elimination of RV contains all

reductions of confluences of tendencies of variables in Λ′ after the elimination of

EV and all reduced restriction equations after the elimination of EV derived from

the restriction equations in Γ. The pair (Λ′,Γ′) is called the reduced base or the

reduction of (Λ,Γ) after the elimination of EV .

It has to be shown that the reduction T ′ of a main term in Γ is an expression Ti

to which none of the four transformations is applicable. This will be the content

of lemma 23.

Table 36 shows how many constants are in T0. If R is not constant then T0 has

exactly as many constants as T . If R is constant, then the substitution of ∂EV

and −∂EV by R or −R, respectively, may bring in one or two new constants

depending on whether ∂EV or −∂EV are components of T . Obviously Table 36

correctly indicates the number of constants in T0.

∂EV and
−∂EV

Either ∂EV
or −∂EV

Neither
∂EV nor
−∂EV

Among the
components
of T are

no
constant
in T

one
constant
in T

no
constant
in T

one
constant
in T

R is constant R is not constant

2 3 0 1

1 2 0 1

0 1 0 1

9 10 11 12

5 6 7 8

1 2 3 4

Table 36. Number of constants in T0

If the right hand side R of the confluence for ∂EV is a current or lagged

tendency then the substitution of ∂EV and −∂EV by R or −R, respectively, may

bring in pairs of doubly represented components, if R or −R are components. It

is clear that no component of T0 can be represented more than twice. Table 37
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shows the number of pairs of doubly represented components in T0. Obviously

this number is correctly indicated.

∂EV and
−∂EV
in T

−∂EV but
not ∂EV

in T

∂EV
but not
−∂EV
in T

Neither
∂EV nor
−∂EV
in T

Neither R
nor −R
in T

R but
not −R
in T

−R but
not R
in T

R and
−R
in T

R is a current or lagged tendency

R
is a

constant

0 1 1 2 0

0 0 1 1 0

0 1 0 1 0

0 0 0 0 0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Table 37. Number of pairs of doubly represented components of T0

Table 38 employs a case distinction according to the numbers of constant and

variable components, the presence and absence of duplicates, and the value of the

sum of all constants in T0. For each of 10 cases it is shown which of the four

transformations have to be applied one after the other until the reduction T ′ of T

is reached. It will be discussed in the proof of Lemma 23 why the entries of Table

38 are correct.

For the sake of simplicity we shall sometimes refer to the four transformations

by the number in their order of application. Thus summation of constants is trans-

formation 1, deletion of zero is transformation 2, deletion of variable components

is transformation 3 and deletion of duplicates is transformation 4.

Tables 36, 37 and 38 contain case numbers in the upper right corner of fields.

This will provide an easy way of referring to individual cases.

The four transformations, summation of constants, deletion of zero, deletion of

variable components, and deletion of variables are equivalent transformations

in the sense that for any fixed specifications of values for the pieces in a main term

to which they are applicable they do not change the value of the main term.
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more

than

one

deletion
of zero

deletion of
variable

components

{0} {−, 0,+} others

sum of constants

summation of constants

one

deletion
of zero

deletion of
duplicates

{0} not {0}

value of constant

none
not

possible

no duplicates

deletion of
duplicates

duplicates

constants

in T0

none at least one

variable components of T0

1 2

3

4 5

6

7

8 9 10

Table 38. Transformations applied to T0

Lemma 23. Let T be the main term of a confluence or restriction equation

of Γ and let T0 be the result of substituting the tendency ∂EV of an eliminable

variable EV in T . Moreover let T ′ be the reduction of T after the elimination of

EV . Then none of the four transformations is applicable to T ′. Table 38 shows

by which successive transformations T ′ results from T .

Proof. If there is no constant in T0 then the transformations 1, 2 and 3 are

not applicable to T0 since they presuppose the presence of at least one constant.

Transformation 4 cannot be applied unless there are duplicates in T0. Therefore,

in case 1 of Table 38 the reduction T ′ is nothing else than T0. In case 2 only the

deletion of duplicates is possible and the result T1 of applying transformation 4 to
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T0 is the reduction T ′. In both cases it is clear that none of the four transformations

is applicable to T ′.

Assume that there is exactly one constant in T0. In case 3 of Table 38 there is no

other component in T0. Therefore in this case T ′ is nothing else than T0 and none

of the four transformations can be applied to T ′. Suppose that there is at least one

variable component in T0 but no doubly represented variable components. Table

36 shows that this situation can arise if there is a constant in T and in case 5 of

Table 36. If there is a constant in T it is also the constant in T0. In case 5 of Table

36 the constant arises by the substitution of either ∂EV or −∂EV by a constant

R. Since T0 has at least one variable component, T has at least one variable

component, too. Therefore it follows by (c6) and (c7) that the constant of T , if

it has one, is unequal to {0} and to {−, 0,+}. However in case 5 of Table 36 the

constant in T0 is {0} for ∂EV = 0. Therefore Table 38 distinguishes between the

cases 4 and 5. In case 4 of Table 38 the transformation deletion of zero is applied

to T0. This yields an expression T1 to which none of the four transformations is

applicable, since T1 has no constant and no duplicates. Therefore T ′ is nothing

else than T1 in case 4 of Table 38. In case 5 of Table 38 the constant of T0 is

unequal to {−, 0,+}, since it is either the constant of T or R or −R. Therefore

in this case none of the four transformations can be applied to T0 and T ′ is T0.

Now consider case 6 of Table 38. Duplicates cannot arise unless R is variable.

Therefore the constant of T0 must be the constant of T . As we have seen above

this constant is different from {0} and from {−, 0,+}. Therefore none of the four

transformations can be applied to T0 and T ′ is T0 in this case.

Assume that there are at least two constants in T0. In all cases of this kind

summation of constants is applied to T0. Let T1 be the expression obtained by

this. T1 has no variable components if T0 has no variable components. Therefore

in case 7 of Table 38 none of the four transformations can be applied to T1 and T ′

is T1.

Now consider the cases 8, 9, and 10 of Table 38. There cannot be any duplicates

if there are more than one constant in T0 since only one constant can come from

T but the others must arise as a consequence of the substitution of ∂EV by a

constant R. Therefore deletion of duplicates cannot be applied in the cases 8, 9,

and 10 of Table 38. In case 8 of Table 38 deletion of zero is applied and in case

10 deletion of variable components. It is clear that in each of the two cases an

expression T1 is obtained to which none of the four transformations is applicable.

T ′ is this expression T1. This completes the proof of the lemma. �

Comment. It has been shown how the elimination of EV transforms a main

term T to a new main term T ′. However, this does not yet answer the question
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whether the reduced base (Λ′,Γ′) defined above is a base in the sense of the defi-

nition in 2.9. A first step in this direction was lemma 23. A further step will be

lemma 24. Finally lemma 25 will give a positive answer to the question.

Lemma 24. Under the assumptions of lemma 23 the following assertions (1),

(2) and (3) hold

(1) T ′ satisfies (c3), (c6) and (c7).

(2) If T is the main term of a confluence in Γ then T ′ has the properties

required by (c4).

(3) If T is the main term of a restriction equation in Γ then T ′ has the

properties required by (c5) and (c8).

Proof. of (1): T satisfies (c3) and therefore has at least one component and

finitely many variable components. Substitution of ∂EV and −∂EV by R and

−R, resp., does not change the number of components but never deletes all of

them. Therefore also T ′ has at least one component and finitely many variable

components. As we have seen before no variable component is represented more

than twice in T0. Variable components can be deleted by the transformations 2,

3, and 4 but no new ones can arise. Therefore no variable component can be

represented more than twice in T ′ either. In view of lemma 23 transformation 4

is not applicable to T ′. Therefore no component of T ′ is represented more than

twice in T ′. If there are more than one constants in T0 the number of constants is

reduced to one by transformation 1. We have shown that T ′ satisfies (c3).

In view of lemma 23 transformation 2 is not applicable to T ′. Therefore T ′

satisfies (c6). Similarly transformation 3 is not applicable to T ′. Therefore T ′

satisfies (c7). �

Proof. of (2): Let T be the main term of a confluence in Γ. Then T satisfies

(c4) and (c9). Therefore the constant in T , if there is one is a direction sum. If

R is constant then T0 may have up to three constant components. The constant

components due to the substitution of ∂EV by R are directions. Therefore the

sum of all constants in T0 is a direction sum. Therefore a constant in T ′ is a

direction sum. Variable components of T ′ are either variable components of T or

they are due to the substitution of ∂EV by R. If R is variable then it is a current

or lagged tendency. Since T satisfies (c4) all variable components of T ′ are current

or lagged tendencies. Consequently T ′ satisfies (c4). �

Proof. of (3): Let T be the main term of a restriction equation in Γ. Then

T satisfies (c5). Since a sum of convex direction sets is a convex direction set the

constant in T ′ must be convex direction sets. The variable components of T ′ are

either in T or they are due to the substitution of ∂EV by a current or lagged

tendency R. Therefore (c5) is satisfied for T ′.
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Boundary restrictions are neither affected by the substitution of ∂EV by R

nor by the four transformations. Since T satisfies (c8) it is clear that ⊲EV and

− ⊲ EV are not both in T . The same must be true for T ′. Therefore (c8) is

satisfied for T ′. �

Lemma 25. The reduced base (Λ′,Γ′) of (Λ,Γ) after the elimination of an

eliminable variable EV is a system base as defined in 2.9.

Proof. Elimination of EV removes EV from the list of variables and the

confluence for ∂EV from the list of confluences and restriction equations. All

other confluences and restriction equations are changed to reduced ones. It is

clear that Λ′ has the properties of a list of variables and that Γ′ satisfies (b1), (b2)

and (b3) of 2.7.

Let T be a main term of a confluence or restriction equation in Γ other than

the confluence for ∂EV and let T ′ be the reduction of T after the elimination

of EV . The reduced confluences and restriction equations in Γ′ differ from their

counterparts in Γ only with respect to their main terms but not with respect to

their restrictions. Since (c1) and (c2) are satisfied for Γ it follows that (c1) and

(c2) are also satisfied for Γ′.

Lemma 24 shows that (c3) to (c8) are satisfied for confluences and restriction

equations in Γ′. It remains to show that the same is true for (c9) and (c10).

(c9) and (c10) only concern the case that EV is a link and that ∂EV or

−∂EV are components of the main term of the confluence for a tendency ∂XY or

of the restriction equation for �XY in Γ. Property (c7) of an eliminable variable

excludes the possibility that this situation can arise. Therefore conditions (c9)

and (c10) are satisfied.

It remains to show that (Λ′,Γ′) satisfies the anchoring requirement (see 2.9).

Suppose that ∂EV is not anchored in (Λ,Γ). Then each directional which is

anchored in Γ has the same confluence or restriction equation in Γ and Γ′. It

follows that the anchoring requirement is satisfied for (Λ′,Γ′).

Now assume that ∂EV is anchored. Then the right hand side R of the conflu-

ence for ∂EV is also anchored in Γ. Moreover R has a lower anchorage level than

∂EV . A directional anchored in Γ and different from ∂EV remains anchored in Γ′

if on the right hand side of its confluence or restriction equation ∂EV is replaced

by R. This is not changed by the later application of transformations 1 to 4. It

follows that the anchoring requirement is satisfied for (Λ′,Γ′). This completes the

proof of the lemma. �
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6.4. The state mapping

As before let EV be an eliminable variable of B = (Λ,Γ) and let B′ = (Λ′,Γ′)

be the reduction of B after the elimination of EV in B. In this section a one-to-one

mapping from the states of B onto the states of B′ will be introduced. This “state

mapping” will be very important for the remainder of this chapter. It will enable

us to define a priority ranking and auxiliary priority function for the reduced base

and it will be essential for the derivation of results.

Consider a state s for B. If the specification of ∂EV is taken out of s one ob-

tains a specification of the values of all scaled variables in Λ′, all current tendencies

of variables in Λ′, and all lagged tendencies and system specific restrictions ap-

pearing in confluences and restriction equations of Γ′. This is so since ∂EV − and

�EV do not appear in Γ. We call s′ the reduction of s after the elimination

of EV . In this way a reduction s′

s′ = λ(s)

is used in order to express the relationship between a state s and its reduction s′

after the elimination of EV . Since EV is kept fixed the dependence of s′ on EV

is not made explicit for the sake of simplicity. For the same reason, we shall often

drop the phrase “after the elimination of EV ” and simply speak about reductions

of main terms, confluences and restriction equations in contexts, in which EV is

kept fixed.

It is clear that s′ has the properties (a1) to (a3) required for a state in 2.7. As

we shall see s′ also has the property (a4) with respect to Γ′. Therefore s′ is a state

for (Λ′,Γ′). For this reason λ is called the state mapping for the elimination

of EV in B or simply the state mapping in contexts in which B and EV are kept

fixed.

In 3.1 transition causes have been introduced as formal objects by expressions

in rectangular brackets. The same expression may describe transition causes at

different states for the same base or even for different bases. In this sense one

speaks of the same transition cause pending at a state s and its image λ(s).

A shift of EV cannot be pending at a state s since EV is unscaled by (e2). A

lag extinction of ∂EV − is impossible in view of (e4). A tendency switch of ∂EV

cannot be pending at a state s since the confluence for ∂EV is monocausal. We

can conclude that no main transition causes of ∂EV can be pending at any state

s.

Perturbances of ∂EV can be pending at a stationary state s. Even if EV is

not only eliminable but removable in a qualitative dynamic system Φ with the

base B this may happen. The removability condition (e8) only requires that no

expected perturbances of a tendency of a removable variable are pending at a
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stationary state. Of course, perturbances of EV cannot be pending at any state

of the reduction (Λ′,Γ′) after the elimination of EV .

We say that a transition cause or halfway switch ω is invariant under the

state mapping λ if the following is true: ω is pending at a state s′ = λ(s) if

and only if ω is pending at s. It will be the aim of this section to show that

all transition causes with the exception of perturbances of ∂EV and all halfway

switches are invariant under the state mapping. This will be the content of lemma

27.

Lemma 26. Let EV be an eliminable variable of a base B = (Λ,Γ) and let

B′ = (Λ′,Γ′) be the reduction of B after the elimination of EV . Moreover let s be

a state for B and let

s′ = λ(s)

be the reduction of s assigned to s by the state mapping λ for the elimination of

EV in B. Then s′ is a state of B′ and λ is a one-to-one mapping from the set of

all states of B onto the set of all states of B′.

Proof. We first show that s′ is a state for B′. Let T be the main term of

a confluence or restriction equation other than the confluence for ∂EV in Γ. As

before let R be the right hand side of the confluence for ∂EV and let T0 be the

result of substituting ∂EV by R in T .

It can be seen immediately, that T0 has the same value as T at s. Since the

four transformations 1 to 4 are equivalent transformations, it is clear that T ′, too,

has the same value as T at s. The boundary restrictions have the same values in B

and in B′. It follows that the right hand side of a reduced confluence or restriction

equation has the same value as the right hand side of the original confluence or

restriction equation. Therefore the definition of the reduction s′ of s has the

consequence that all confluences and restriction equations are satisfied in Γ′ at s′.

We can conclude that s′ does not only have the properties (a1), (a2) and (a3) of

2.7 but also the property (a4) with respect to Γ′. Therefore s′ is a state for B′.

We now show that λ is a one-to-one mapping from the set of all states for B

onto the set of all states for B′. For this purpose we have to prove that every state

s′ for B′ has exactly one inverse image with respect to λ. Let s′ be a state for

B′. Let s′ be the specification of values for all scaled variables, for all current and

lagged tendencies and all system specific restrictions appearing in confluences and

restriction equations of Γ which is obtained by complementing s by that value for

∂EV which results if the right hand side R of the confluence for ∂EV is evaluated

at s′. Suppose that this s is not a state for B. Then there must be at least one

confluence or restriction equation in Γ which is not satisfied at s. This cannot be
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the confluence for ∂EV , since the value of ∂EV at s has been constructed in such

a way that the confluence for ∂EV is satisfied.

Let T be the main term of a confluence or restriction equation which is not

satisfied. Let T0 be the result of substituting ∂EV by the right hand side R of

the confluence for ∂EV in T (see 6.3). At s′ this expression T0 has the same

value as T at s. Since the four transformations 1, 2, 3, and 4 are equivalent

transformations the value of the reduction T ′ of T at s′ also coincides with the

value of T at s. A boundary or system specific restriction has the same value at s

and s′. Therefore the value of the right hand side of the confluence with the main

term T has the same value at s as the right hand side of its reduction at s′. By

assumption the confluence or restriction equation of Γ under consideration is not

satisfied. Therefore its reduction is not satisfied contrary to the assumption that

s′ is a state for (Λ′,Γ′). This shows that s must be a state of (Λ,Γ). Consequently,

s is an inverse image of s′ with respect to the state mapping λ.

It can be seen as follows that s is the only inverse image of s′ with respect

to λ. By the definition of λ the states s and s′ specify the same values for all

scaled variables, all current and lagged tendencies with the exception of ∂EV

and all system specific restrictions. Moreover, the value of ∂EV at s is uniquely

determined since it is the value of R at s′. Here it is of importance that EV is

monocausal. This completes the proof of the lemma. �

Remark. The proof has shown that for every XY different from EV the right

hand side of the confluence for ∂XY or the restriction equation for �XY , if there

is one, has the same value at s as the right hand side of its reduction at s′.

Lemma 27. Let EV be an eliminable variable of a base B = (Λ,Γ) and let

B′ = (Λ′,Γ′) be the reduction of B after the elimination of EV . Moreover let λ be

the state mapping for the elimination of EV in B and let ω be a main transition

cause, a halfway switch or a perturbance of a tendency ∂XY other than ∂EV .

Then ω is invariant under the state mapping λ.

Proof. We first show that the assertion holds for main transition causes and

halfway switches. It has been pointed out at the beginning of this section that

a shift of EV , a lag extinction of ∂EV − or a tendency switch of ∂EV cannot

be pending at a state of B. Consequently all main transition causes and halfway

switches pending at a state s of B concern values of scaled variables in Λ′ or values

of current or lagged tendencies of variables in Λ′.

Each scaled variable and each current or lagged tendency of a variable in Λ′ has

the same value at s and s′ = λ(s). Therefore the same shifts and lag extinctions

are pending at s and s′. In view of the remark after the proof of lemma 26 a

tendency switch of a tendency ∂XY is pending at s in B, if and only if it is
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pending at s′ in B′. The same is true for halfway switches. Consequently, the

assertion holds for main transition causes and halfway switches.

It remains to show that the assertion holds as far as perturbances are con-

cerned. Let ω = [∂XY : d] be a perturbance of a tendency ∂XY other than

∂EV pending at a potentially stationary state s of B. Then at s the value of

∂XY is zero and d is in the value of the boundary restriction or system specific

restriction for ∂XY , if there is one (see 3.3). A state s is potentially stationary if

no shifts, no lag extinctions and no immediate tendency switches are pending at

s. Since the assertion holds for main transition causes, it follows that s′ = λ(s) is

potentially stationary in B′ if and only if s is potentially stationary in B. In view

of the remark after the proof of lemma 26 we can conclude that the perturbance

ω = [∂XY : d] is pending at s′ = λ(s) in B′, if and only if it is pending at s in B.

This completes the proof of the lemma. �

Remark. The proof has shown that the state s′ = λ(s) is potentially stationary

in B′ if and only if s is potentially stationary in B.

6.5. Reduction and modification

6.5.1. The reduced system. Let RV be a removable variable of the quali-

tative dynamic system

Φ = (Λ,Γ, ρ, α)

and let B′ = (Λ′,Γ′) be the reduction of its base B = (Λ,Γ) after the elimination

of RV . In the following it will be our aim to complement B′ by a reduced priority

ranking ρ′ and a reduced perturbance assignment α′ in order to define a “reduced

system”

Φ′ = (Λ′,Γ′, ρ′, α′)

and to show that Φ′ is a qualitative dynamic system as defined in 3.7.

Let λ be the state mapping for the elimination of RV in B. The inverse of λ

is denoted by λ−1. The reduced priority ranking ρ′ after the elimination of

RV in Φ is defined by

ρ′(ω, s′) = ρ(ω, λ−1(s))

for every state s′ of B′ and for every main transition cause ω pending at s′.

Since fleeting, lasting, and exposed states are defined in terms of the main

transition states pending at them, it follows by lemma 27 that ρ′ satisfies conditions

(d1), (d2), and (d3) in 3.5. Therefore ρ′ is a priority ranking for B′. Moreover, in

view of the remark after the proof of lemma 27 it is clear that a state s′ = λ(s) is

potentially stationary in B′ if and only if s is potentially stationary in B.
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The reduced perturbance assignment α′ after the elimination of RV

assigns the set α′(s′) of all perturbances ω with

ω ∈ α(λ−1(s))

to every potentially stationary state s′ of B′. Since RV satisfies the removability

condition (e8), no perturbance of ∂RV is in the expected perturbance set α(s)

of s = λ−1(s′). It follows by lemma 27 that all perturbances pending at s′ are

also pending at s. Moreover in view of the remark after the proof of lemma 27

it is clear that a state s′ = λ(s) is potentially stationary in B′ if and only if it

is potentially stationary in B. We can conclude that α′ has the properties of a

perturbance assignment as defined in 3.6.

We can conclude that the reduced base (Λ′,Γ′) together with the reduced

priority ranking ρ′ and the reduced perturbance assignment α′ after the elimination

of RV form a qualitative dynamic system

Φ′ = (Λ′,Γ′, ρ′, α′)

as defined in 3.7. This system Φ′ is the reduced system of Φ after the elim-

ination of RV or more shortly the reduction of Φ′ after the elimination of

RV .

6.5.2. Operators. Let EV be an eliminable variable in the base B = (Λ,Γ)

and let B′ = (Λ′,Γ′) be the reduction of B after the elimination of B. We use the

notation

B′ = MEV (B)

in order to express the relationship between B and B′. We call MEV the elimi-

nation operator for EV . This elimination operator is applicable to every base

in which EV is an eliminable variable.

The common name modifier is used for tendency switches, halfway switches

and perturbances of a tendency ∂XY in a base B = (Λ,Γ). A modifier ω gives

rise to a modified base Bω = (Λ,Γω). In the case ω = [∂XY → d] of a tendency

switch or a halfway switch, Bω is the hypothetical base of B for ω and in the

case ω = [∂XY : d] of a perturbance, Bω is the auxiliary base of B for ω. The

relationship between B and Bω is expressed by the notation

Bω = Mω(B)

We call Mω the modification operator for ω. The modification operator Mω

with ω = [∂XY → d] or [∂XY : d] is applicable to every base B = (Λ,Γ) with

the following two properties:

(i) The variable XY is in Λ

(ii) The base B has at least one state at which ω is pending
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As has been pointed out in 3.2.3 and 3.3.1 the modified base does not depend

on the state or the states of B at which ω is pending. The modified base Bω is well

defined, even if ω is not pending at any state of B. However, there is no necessity

to look at Bω unless B has at least one state at which ω is pending.

A modification operator Mω with ω = [∂XY → d] or ω = [∂XY : d] is

compatible with the elimination operator MEV , if XY and EV are different

variables. Otherwise Mω and MEV are incompatible. Suppose that Mω and

MEV are compatible and applicable to B. It can be seen without difficulty that

EV is eliminable in Mω(B) and that therefore MEV is applicable to Mω(B). It

follows by lemma 27 that ω is pending at the state s′ = λ(s) of B′ = MEV (B) if

ω is pending at the state s of B. Therefore Mω is applicable to MEV (B). We say

that the operators MEV and Mω commute if we have

Mω(MEV (B)) = MEV (Mω(B)).

The validity of this equation is the content of the following lemma 28.

Lemma 28. Let EV be an eliminable variable in a base B = (Λ,Γ) and let

ω = [∂XY → d] or ω = [∂XY : d] be a modifier such that ω is pending at at

least one state of B and Mω is compatible with MEV . Then Mω is applicable to

MEV (B) and MEV is applicable to Mω(B). Moreover we have:

Mω(MEV (B)) = MEV (Mω(B))

In other words, the operators Mω and MEV commute.

Proof. Just before the statement of the lemma it has been pointed out that

Mω is applicable to MEV (B) and MEV is applicable to Mω(B). It remains to

show that Mω and MEV commute. Let VW be a variable different from EV and

XY in B and let S be the main term of the restriction equation for �V W or the

confluence for ∂V W . The operator Mω leaves S unchanged. The operator MEV

changes S to the same term S ′, regardless of whether MEV is applied to B or to

Mω(B). Therefore the main term S is replaced by this term S ′ in Mω(MEV (B))

as well as in MEV (Mω(B)). The same argument also applies to the main term of

the restriction equation for �XY . It remains to be shown that the main term of

the confluence for ∂XY is the same one in Mω(MEV (B)) and MEV (Mω(B)).

Consider the case ω = [∂XY → d] of a tendency switch or a halfway switch

of ∂XY . In this case Mω replaces the right hand side of the confluence for ∂XY

by d. Obviously the end result is the same one, regardless of whether first MEV is

applied to B and then Bω or whether the two operators are applied in the reverse

order. It is clear that in this case the two operators commute.

We now look at the remaining case. Let ω = [∂XY : d] with d 6= 0 be a

perturbance of ∂XY and let T be the main term of the confluence for ∂XY in B.
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This main term depends on the combination of values of the scaled variables in B.

In the following we look at T for a fixed but arbitrary combination of this kind.

Suppose that T has no variable components of the form ∂EV or −∂EV . Then

T is not changed by the application of MEV . Regardless of whether Mω is applied

first and MEV second or whether the two operators are applied in the reverse

order, the end result is the same simplification Tω of T + d. In this case the two

operators commute. In the following we shall assume that T has at least one

component of the form ∂EV or −∂EV . Let W be the sum of all components of

T of the form ∂EV or −∂EV . Let V be the sum of all other variable components

of T . Moreover let C be the constant component of T . In view of (c6) in 2.8 we

cannot have C = {0}, since T has the variable components in C. Therefore either

C = d or C = −d or C = {−, 0,+} holds. However, the case C = {−, 0,+} is

excluded by (c7) in 2.8, since T has the variable components in W . Therefore we

either have C = d or C = −d.

Since Mω is applicable to B, the base B has a potentially stationary state s

at which ω is pending. At this state s the value of T must be zero in view of

condition (i) for the perturbability of ∂XY at s. Consider the case that the right

hand side of the confluence for ∂EV is a constant direction. Then the value of T

at s cannot be zero unless the confluence for ∂EV has the form

∂EV = 0

Another constant direction on the right hand side would result in a value of T at

s different from zero.

Tables 39, 40 and 41 are based on a case distinction between ∂EV = 0 and

all other possible forms of the confluence for ∂EV . This case distinction concerns

the rows of the tables. In the case ∂EV = 0 it is important whether there are

variable components different from ∂EV or −∂EV in T . These cases are shown

in the columns of the tables. However, if the form of the confluence for ∂EV is

different from ∂EV = 0 this case distinction with respect to the form of T is not

necessary.

It has been shown that a constant component of T , if there is one, must have

the value d or −d. Of course, T may not have any constant component. Each of

the tables 39, 40 and 41 deals with one of the three possibilities. It is clear that

the tables cover all cases which are still open. Since no distinction with respect to

the structure of T has to be made, unless we have ∂EV = 0, the table has only

three fields. The entries in these fields are figures which show, how T is changed

by a successive application of MEV and Mω to B in this order or in the reverse

one. It will now be argued that the figures correctly describe these changes.
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Forms of the
confluence
for ∂EV

T = V +W T = W

∂EV = 0

∂EV = ∂TU
∂EV = −∂TU
∂EV = ∂TU−

∂EV = −∂TU−

T V

T + d V + d

MEV

Mω

MEV

Mω

T 0

T + d d

MEV

Mω

MEV

Mω

T T ′

T + d T ′ + d

MEV

Mω

MEV

Mω

1) 2)

1 2

3

Table 39. The case of a main term T without constant components

1) The main term T has variable components other than ∂EV or −∂EV . The sum of these
components is V . The sum of the components of the form ∂EV or −∂EV is W
2) All variable components of T have the form ∂EV or −∂EV

For easy reference the fields in the three tables are numbered from 1 to 9 in

the upper right corner. In all three fields of Table 39, case 1 of Table 12 in 3.3.1

yields the conclusion that the application of Mω to B changes the term T to T +d.

In fields 1 and 2 the application of MEV to B removes W and thereby changes T

to V and 0, respectively. In field 3 the application of MEV to B substitutes ∂EV

by the right hand side of the confluence for ∂EV . Then duplicates are removed

if necessary. The same steps are taken for T + d in the application of MEV to

Bω = Mω(B). Here, too we receive the same expression T ′ + d in MEV (Bω) and

Mω(B
′). It follows that in all three cases of Table 39 the operators MEV and Mω

commute.
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Forms of the
confluence
for ∂EV

T = d+ V +W T = d+W

∂EV = 0

∂EV = ∂TU
∂EV = −∂TU
∂EV = ∂TU−

∂EV = −∂TU−

T d+ V

T d+ V

MEV

Mω

MEV

Mω

T d

T d

MEV

Mω

MEV

Mω

T T ′

T T ′

MEV

Mω

MEV

Mω

4 5

6

Table 40. The case of d as the constant component of T ∗)

∗) See the footnotes 1) and 2) below Table 39

In Table 40 the main term T is not changed by Mω in view of d + d = d.

Therefore we have B = Bω(B). Obviously, MEV and Mω commute in the three

cases of Table 40.

In all three cases of Table 41 the main term of T contains −d. This is

not changed by the application of MEV . Therefore in Mω(B) as well as in

Mω(MEV (B)) the term T is changed to {−, 0,+}. Obviously, the application

of MEV to Mω(B) does not involve further changes of T . We can conclude that

MEV and Mω commute in the three cases of Table 41. This completes the proof

of the lemma.

�

Comment. It is the task of this chapter to show that the elimination of a re-

movable variable does not change any important feature of the system. Since by

(e8) a removable variable is perturbance free, it follows by lemma 27, that transi-

tion causes are invariant under the elimination of a removable variable. Therefore
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Forms of the
confluence
for ∂EV

T = −d+ V +W T = −d+W

∂EV = 0

∂EV = ∂TU
∂EV = −∂TU
∂EV = ∂TU−

∂EV = −∂TU−

T −d+ V

{−, 0,+} {−, 0,+}

MEV

Mω

MEV

Mω

T −d

{−, 0,+} {−, 0,+}

MEV

Mω

MEV

Mω

T T ′

{−, 0,+} {−, 0,+}

MEV

Mω

MEV

Mω

7 8

9

Table 41. The case of −d as the constant component of T ∗)

∗) See the footnotes 1) and 2) below Table 39

lemma 27 was an important step towards the goal of this chapter. However the

invariance of transition causes is not enough. A similar invariance property has

to be derived for transition results. For this purpose it is necessary to look at

realizations of the readjustment processes not only in a base B and its reduction

B′ but also in the hypothetical and auxiliary bases of B and B′. For this purpose

lemma 28 will be of crucial importance. More about this will be said in 6.7.2.

6.6. The prestate mapping

Let EV be an eliminable variable of a base B = (Λ,Γ) and let B′ = (Λ′,Γ′)

be the reduction of B after the elimination of EV . In 4.1 the notion of a prestate

has been introduced. A prestate differs from a state in three ways. Instead of one

value for a current tendency a prestate specifies two values for a left and a right

tendency. A prestate specifies a confirmation status L or F for every directional.

Confluences and restriction equations need not be satisfied at a prestate.
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If ω is a modifier, then the space of prestates is the same for B and Bω =

Mω(B). A prestate p′ for the reduction B′ of B differs from a prestate p for B

only inasmuch as no values for ∂EVL and ∂EVR and no comfirmation status of

EV is specified by p′.

For every prestate p of B an associated prestate p′ = π(p) for B′ is defined

as follows: p′ results from p by taking out the specifications of ∂EVL and ∂EVR

and the confirmation status of ∂EV but leaving everything else unchanged. The

function π which connects the prestates of B to their associated prestates of B′ is

called the prestate mapping for the elimination of EV in B.

Unlike the state mapping defined in 6.4, the prestate mapping is not a one-

to-one mapping. It is a mapping from the set of all prestates in B onto the set

of all states of B′. However, a state of B′ does not have a unique inverse image

under this mapping. For every prestate p′ of B′ let π−1(p′) be the set of all p with

p′ = π(p). There are 18 ways of specifiying ∂EVL, ∂EVR and the confirmation

status of ∂EV . Therefore π−1(p′) has 18 elements.

As has been explained in 4.3 a start is a prestate p0 with ∂XYL = ∂XYR for

every tendency ∂XY and with the additional property that at p0 every confirma-

tion status has the value L. A start p0 for B is called EV -adjusted, if at p0 the

confluence for EV is satisfied.

A start is not necessarily EV -adjusted. Consider the example of an eliminable

variable EV with the confluence

∂EV = ∂XY −

Let ω be the lag extinction of ∂XY − pending at a state s. Then at p0(ω, s) the

left and right tendencies of ∂EV have the same value as ∂EV at s, but the value

of ∂XY − is changed. Obviously the confluence for ∂EV is not satisfied at p0(ω, s).

In 4.3 the prestate p0(s) of a state s for B has been defined. The prestate

p′0(s
′) of state s′ for B′ is defined analogously as the prestate for B′ at which

scaled variables, lagged tendencies, and system specific restrictions have the same

values as at s′, at which the value of a left and right tendency ∂XYL and ∂XYR is

the value of ∂XY at s′, and at which every confirmation status is L. The notation

p′0(ω, s
′) is used for the transition start of ω at a state s′ of B′ at which ω is

pending.

Lemma 29. Let EV be an eliminable variable of a base B = (Λ,Γ) and let

B′ = (Λ′,Γ′) be the reduction of B after the elimination of EV . Moreover, let λ

be the state mapping and π be the prestate mapping for the elimination of EV in

B. Then the following statements are true:

(1) The prestate mapping is a mapping from the set of all prestates of B onto

the set of all prestates of B′.
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(2) Let s be a state of B and let ω be a transition cause other than a per-

turbance of ∂EV or let ω be a halfway switch pending at s. Moreover let

s′ = λ(s) be the image of s under the state mapping λ. Then we have

p′0(s
′) = π(p0(s))

and

p′0(ω, s
′) = π(p0(ω, s))

(3) For every state s of B the prestate p0(s) is EV -adjusted.

(4) If ω is a transition cause or a halfway switch pending at a state s of

B, such that p0(ω, s) is not EV -adjusted then ω is a lag extinction of a

lagged tendency ∂XY − and the confluence for ∂EV either has the form

∂EV = ∂XY − or∂EV = −∂XY −.

Proof. Statement (1) repeats a conclusion reached immediately after the def-

inition of the prestate mapping. We now look at statement (2). The state s′ = λ(s)

is obtained from s by leaving out the specification of ∂EV and leaving everything

else unchanged. The prestate p0(s) results from s by attaching the value of ∂XY

in s to ∂XYL and ∂XYR in p0(s) for every tendency ∂XY in B, by leaving the

values of all other components of s unchanged and by specifying the confirmation

status of every directional as L. The way in which p′0(s
′) is connected to s′ is

analogous. Therefore p′0(s
′) can be obtained from p0(s) by leaving out the speci-

fications of ∂EVL and ∂EVR and by changing nothing else, or in other words as

π(p0(s)). This shows that the first equation of (2) holds.

If ω is a tendency switch, a halfway switch or a perturbance, then p(ω, s) is

nothing else than p0(s). Therefore in this case the second equation is an immediate

consequence of the first one. If ω is a shift of a scaled variable XY to a new value

then p0(ω, s) differs from p0(s) only by this new value of XY and the same is true

for p′0(ω, s
′) and p′(s′). Therefore leaving out the specifications of ∂EVL and ∂EVR

in p0(ω, s) yields p
′

0(ω, s
′). This shows that the second equation holds in the case

of a shift. The case of a lag extinction is analogous. Consequently (2) holds.

We now turn our attention to (3). Since s is a state the confluence for ∂EV

is satisfied at s. Therefore this confluence is also satisfied at p0(s). Consequently

(3) holds.

Finally we look at (4). In view of (3) nothing has to be proved for the cases

in which p0(ω, s) = p0(s) holds. In the case of a shift of a scaled variable XY the

prestate p0(ω, s) differs from p0(s) only by the value of XY . Since the confluence

for ∂EV is scale independent, it follows by (3) that in this case p0(ω, s) is EV -

adjusted.

Now assume that ω is the lag extinction of a lagged tendency ∂XY − and that

the confluence for ∂EV neither has the form ∂EV = ∂XY − nor ∂EV = −∂XY −.
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This case is similar to that of a shift. p0(ω, s) differs from p0(s) only by the value

of ∂XY − and this lagged tendency does not appear on the right hand side of the

confluence for ∂EV . Therefore p0(ω, s) is EV -adjusted in this case, too. This

completes the proof of the lemma. �

6.7. Reducibility

6.7.1. Invariance of transition results. As in the preceding section let

EV be an eliminable variable of a base B = (Λ,Γ) and let B′ = (Λ′,Γ′) be the

reduction of B after the elimination of EV . Moreover let λ be the state mapping

and π be the prestate mapping for the elimination of EV in B.

Transition causes and halfway switches other than perturbances of ∂EV are

invariant under the state mapping. This was the content of lemma 27. In the

following a definition of invariance under the state mapping of the result of a

transition cause ω at a state s will be given. Later in this chapter it will be shown

that a transition cause ω pending at a state s of B which is not a perturbance of

∂EV always has the property that the result of ω at s is invariant under the state

mapping λ in the sense of this definition. This will be important for the conclusion

that the elimination of an eliminable variable does not lead to an essential change

of the transition diagram and the extended transition diagram.

In 5.2 a readjustment result h(ω, s) and a transition result z(ω, s) have been

defined for every realizable main transition cause ω pending at a state s of B.

The only main transition causes which are not realizable are infeasible tendency

switches. The readjustment result h(ω, s) is the final prestate of a realization of

the readjustment process in B starting with p0(ω, s) if ω is a reanchoring, i.e., a

shift or a lag extinction. If ω is a feasible tendency switch then h(ω, s) is the final

prestate of a readjustment process in the hypothetical base Bω = Mω(B) starting

with p0(ω, s). If ω = [∂XY → d] is a semifeasible tendency switch, then h(ω, s)

is the final prestate of a readjustment process in the hypothetical base Bµ for

the halfway switch µ = [∂XY → 0] starting with p0(µ, s). The transition result

z(ω, s) is the state generated by h(ω, s). Transition results remain undefined for

infeasible tendency switches.

Consider a realizable main transition cause ω at a state s′ of B′. We use the

notation h′(ω, s′) for the readjustment result and z′(ω, s′) for the transition result

of ω at s′ in B′. We say that the result of ω at s is invariant under the state

mapping if we have

z′(ω, s′) = λ(z(ω, s)) for s′ = λ(s)
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(The definitions of readjustment results and transition results have been repeated

here, in order to emphasize their somewhat involved meaning in the case of a

tendency switch.)

Let ω = [∂XY : d] be a perturbance pending at a potentially stationary state

s of B and let s′ = λ(s) be the image of s under the state mapping. The set of

all reentry states e which can be reached after the perturbance ω at s is denoted

by E(ω, s). Consider a system Φ = (Λ,Γ, ρ, α) with the base B. Obviously, the

reentry state set E(s) defined in 5.8 is the union of all E(ω, s) with ω ∈ α(s). We

call E(ω, s) the reentry state set after ω at s.

In view of the remark after the proof of lemma 26 the state s′ = λ(s) is

potentially stationary in B′. The reentry set after ω at s′ is defined analogously

to E(ω, s) and is denoted by E ′(ω, s′).

Assume that XY and EV are different variables. We say that the result of ω

at s is invariant under the state mapping, if E ′(ω, s′) is the set of all e′ = λ(e)

with e ∈ E(ω, s).

Finally the definition of invariance under the state mapping is extended to the

case that ω is an infeasible tendency switch at a state s of B. In this case we

say that the result of ω at s is invariant under the state mapping if ω is

infeasible at s′ = λ(s). This way of speaking involves a slight abuse of language,

since we take the point of view that an infeasible tendency switch does not cause

a transition and therefore does not lead to a transition result. Nevertheless this

way of completing the definition of invariance under the state mapping of ω at s

is convenient and seems to be natural.

6.7.2. Preview. It is the aim of this chapter to show that the elimination of

a removable variable does not involve essential changes of the transition diagram

or the extended transition diagram. In these diagrams for a system Φ a node

represents a state s. In the reduction Φ′ of Φ after the elimination of a removable

variable RV of Φ the same node represents the image s′ = λ(s) under the state

mapping for the elimination of RV . Everything else remains unchanged. The

edges are associated to the same transition causes. In order to show this, it is

necessary to derive “invariance of transition results” in the following sense: If EV

is an eliminable variable and ω is a transition cause other than a perturbance of

∂EV , pending at state s, then ω at s is invariant under the state mapping for the

elimination of EV .

The way towards the establishment of invariance of transition results will be

long and tedious. A tool for tackling this task will be presented in 6.7.3. Consider

a pair of realizations p0, . . . , pN in a base B and p′0, . . . , p
′

L in the reduction B′

of B after the elimination of an eliminable variable EV . Assume that p0 and p′0
are the transition starts p0 = p0(ω, s) and p′0 = p′0(ω, s

′) for a transition cause ω
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pending at s and s′ = λ(s), respectively. It is necessary to prove that p′L is the

image π(pN) of pN under the prestate mapping for the elimination of EV in B.

It follows by theorem 3 on the order independence of the final prestate of a

readjustment process that for the purpose of proving p′L = π(pN) one can restrict

one’s attention to special realizations. The realization p0, . . . , pN will be assumed

to be “EV-reducible”. This means that it has certain properties which permit the

construction of a special realization p′0, . . . , p
′

L in B′. This construction proceeds

as follows: One first forms a “preliminary reduction” p00, . . . , p
0
N with p0k = π(pk)

for k = 0, . . . , N and then the “reduction” by leaving out the p0k with the property

that the value or the confirmation status of ∂EV is changed in the step from pk−1

to pk. The “EV-reduction” will be shown to be a realization of the readjustment

process in B′.

Two cases need to be distinguished with respect to the definition of an EV -

reducible realization: The link case in which EV is a link and the source case

in which EV is a source. The definition is quite simple in the source case but

considerably more complex in the link case.

It has to be shown that an EV -reducible realization always exists. This will

be done in 6.8. In 6.9 it will be shown that the EV -reduction is a realization of

the readjustment process in B′. We refer to this as the “realization property”.

The tool of EV -reducible realizations and their EV reductions can be directly

applied to the case of a shift or a lag extinction. Here invariance of transition

results concerns readjustment processes in a base B and in its reduction B′ after

the elimination of EV . In the case of a tendency switch ω one has to look at

realizations of the readjustment process in the hypothetical bases Bω = Mω(B)

and B′

ω = Mω(MEV (B)). Here it is of crucial importance that in view of lemma 28

the base B′

ω is also the reduction of Bω after the elimination of EV . This makes

it possible to apply the tool of EV -reducible realizations and their EV -reductions

to Bω and B′

ω.

If a tendency switch ω = [∂XY → d] turns out not to be feasible one has

to look at readjustment processes in the hypothetical bases Bµ = Mµ(B) and

B′

µ = Mµ(MEV (B)) where µ is the halfway switch µ = [∂XY → 0]. Here, too,

lemma 28 permits the application of the tool of EV -reducible realizations to Bµ

and B′

µ. In this way it is possible to show that invariance of transition results

holds for main transition causes.

Consider the case of a perturbance ω of a tendency other than ∂EV pending

at a potentially stationary state s of B. In this case lemma 28 together with the

invariance of main transition causes can be applied to the auxiliary bases Bω of B

and B′

ω of B′. In this way it will be possible to construct a one-to-one relationship
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between the reentry histories after ω in B and B′, which permits the conclusion

that the invariance of transition results holds for ω at s.

6.7.3. EV -reducible realizations. Let EV,B,B′, λ and π be defined as in

6.7.1. As we have seen in 6.2.1 an eliminable variable is either a source or a link. A

case distinction will be made between the source case, in which EV is a source

and the link case in which EV is a link. The definition of an RV -reducible

realization in B is straightforward in the source case and somewhat less simple in

the link case.

Let p0 be a start for B. In the source case a realization p0, . . . , pN of the read-

justment process in B is called EV -reducible if ∂EV is adapted and confirmed

in the step from p0 to p1. It will be part of the content of lemma 30 that in the

source case an EV -reducible realization p0, . . . , pN of the readjustment process

in B exists for every arbitrary start p0 for B. This is important in view of the

exceptional case in statement (4) of lemma 29.

In the link case a transition start is always EV -adjusted. Assume that EV is

a link with ∂XY or −∂XY as the determinator of ∂EV . In this case a realization

p0, . . . , pN of the readjustment process in B is called EV -reducible, if the following

four conditions are satisfied.

(g1) The start p0 is EV -adjusted

(g2) If and only if ∂XY is confirmed or adapted and confirmed in the step from

pj−1 to pj, the tendency ∂EV is confirmed or adapted and confirmed in

the step from pj to pj+1. This is true for j = 1, . . . , N−1. (Not necessarily

the same activity is applied to ∂XY and ∂EV .)

(g3) If and only if ∂XY is dampened in the step from pj−1 to pj, the tendency

∂EV is dampened in the step from pj to pj+1. This is true for j =

1, . . . , N − 1.

(g4) If activity 3 is applied to ∂EV then ∂EV has been dampened before and

∂EV is adapted in the first step of the adaptation phase immediately

following the dampening phase. (This is the step from r(4, 1) to the next

prestate in p0, . . . , pN .) Moreover ∂XY is adapted after ∂EV in the same

adaptation phase.

Conditions (g2) and (g3) are understood as implying that the concerning opera-

tions cannot be applied to ∂EV in the step from p0 to p1 and to ∂XY in the step

from pN−1 to pN , since there is no pj−1 for j = 0 and no pj+1 for j = N .

In the source case as well as in the link case, a prestate pj in an EV -reducible

realization p0, . . . , pN in B is called exceptional, if an operation is applied to

∂EV in the step from pj to pj+1. This step is then also called exceptional. This

definition has to be understood as implying that pN cannot be exceptional, since
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there is no step from pN to pN+1. In the source case p0 is the only exceptional

prestate. In the link case there may be more than one exceptional prestate. A

prestate pj in an EV -reducible realization is called normal if it is not exceptional.

In the following the notion of an EV -reduction will be introduced. Here no

distinction is made between the source case and the link case.

The EV -reduction p′0, . . . , p
′

L of an EV -reducible realization p0, . . . , pN is

obtained as follows: First a preliminary EV -reduction p00, . . . , p
0
N with

p0j = π(pj) for j = 0, . . . , N

is formed then all prestates p0j = π(pj) are taken out of p00, . . . , p
0
N , for which

pj is exceptional. The remaining prestates of p00, . . . , p
0
N are then renumbered

consecutively from 1 to L. In this way one obtains the EV-reduction p′0, . . . , p
′

L of

p0, . . . , pN .

In the EV -reduction the index j of p0j is replaced by a new index m = τ(j).

We call τ the renumbering function. Neither in the source case nor in the link

case the last prestate pN of p0, . . . , pN can be exceptional. In the source case only

p0 is exceptional and there must be at least one other prestate p1 in p0, . . . , pN .

For the reasons explained above pN cannot be exceptional. In both cases we have

L = τ(N).

6.8. Existence of EV -reducible realizations

In the following two lemmas will be proved. Theorem 7 asserts the existence

of EV -reducible realizations for arbitrary starts in the source case and for EV -

adjusted starts in the link case. Lemma 31 has the purpose to make it clear that

all cases of starts arising in the theory proposed here are covered by lemma 30.

Theorem 7. Let B = (Λ,Γ) be a base and let EV be an eliminable variable

in B. Moreover let p0 be a start for B. Assume that one of the following two

conditions 1) and 2) is satisfied:

1) EV is a source.

2) p0 is EV -adjusted and EV is a link

Then an EV -reducible realization p0, . . . , pN of the readjustment process in B,

starting with p0 exists.

Proof. Assume that EV is a source. Then ∂EV is mature at p0. Therefore

∂EV can be adapted and confirmed in the step from p0 to p1. The sequence

p0, . . . , pN can then be continued in any way permitted by the definition of the

readjustment process. Obiously one thereby receives an EV -reducible realization.

From now on we assume that EV is a link and that p0 is EV -adjusted. Let

∂XY be the determinator of EV . As in section 6.3 the right hand side of the
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Form of confluence for ∂EV

case ∂EV = ∂XY ∂EV = −∂XY

1
∂EVL = ∂XYL 6= 0 ∂EVL = −∂XYL 6= 0

∂EVR = ∂XYR = 0 ∂EVR = ∂XYR = 0

2 ∂EVL = ∂EVR = ∂XYL = ∂XYR 6= 0 ∂EVL = ∂EVR = −∂XYL = −∂XYR 6= 0

3 ∂EVL = ∂EVR = ∂XYL = ∂XYR = 0 ∂EVL = ∂EVR = −∂XYL = −∂XYR = 0

Table 42. Cases at r(4, 1)

confluence for ∂EV is denoted by R. The proof of the assertion will make use of

the flow chart of figure 8 in 4.5. We shall follow the course of the readjustment

process in order to construct an EV -reducible realization by taking advantage

of the freedom of order, in which an activity is applied during a phase of its

application.

We first look at the possibility that ∂XY is adapted and confirmed at rectan-

gle 3 of figure 8. Obviously in this case ∂EV cannot become mature before ∂XY ,

but immediately after the application of activity 1 to ∂XY the tendency ∂EV is

mature and adaptation and confirmation of ∂EV can follow immediately. Conse-

quently a first phase the application of activity 1 can be arranged as required by

(g2). After the adaptation and confirmation of ∂EV one obtains an EV -reducible

realization by continuing in any permissible way.

Since the case of adaptation and confirmation of ∂XY and ∂EV at rectangle 3

has been clarified, it will be assumed in the following that at r(2, 1) the tendencies

∂XY and ∂EV are still loose. Up to r(2, 1) all changes of left and right tendencies

concern tendencies which are firm at r(2, 1). Therefore at r(2, 1) the right and left

tendencies of ∂XY and ∂EV have the same values as at the EV -adjusted start

p0. The tendencies ∂XY and ∂EV are univalued and the confluence for ∂EV is

satisfied at r(2, 1). Either both of them are non-zero tendencies or both of them

are zero-tendencies at r(2, 1).

At r(2, 1) a dampening phase may begin. This phase ends at r(4, 1). During

a dampening phase only values of right tendencies are changed. We now look at

the question what happens to ∂XYR and ∂EVR between r(2, 1) and r(4, 1). The

values of the left and right tendencies of ∂XY and ∂EV remain unchanged if ∂XY

and ∂EV are not dampened.

We distinguish 3 cases described by Table 42 which may arise at r(4, 1) with

respect to the values of the right and left tendencies of ∂EV and ∂XY . At r(2, 1)

these two tendencies are univalued and all their left and right tendencies are equal.

In cases 1 and 2 ∂EV and ∂XY are non-zero tendencies and in case 3 they are

zero-tendencies at r(2, 1) and therefore also at r(4, 1).
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Form of confluence for ∂EV

case ∂EV = ∂XY ∂EV = −∂XY

4
∂XYL 6= 0 ∂XYL 6= 0

∂EVL = ∂EVR = ∂XYR = 0 ∂EVL = ∂EVR = ∂XYR = 0

5 ∂EVL = ∂EVR = ∂XYL = ∂XYR 6= 0 ∂EVL = ∂EVR = −∂XYL = −∂XYR 6= 0

6 ∂EVL = ∂EVR = ∂XYL = ∂XYR = 0 ∂EVL = ∂EVR = −∂XYL = −∂XYR = 0

Table 43. Cases at r(6, 1)

Case 1 arises if ∂XY and ∂EV are non-zero tendencies and ∂XY is malad-

justed at r(2, 1) or becomes maladjusted between r(2, 1) and r(4, 1). As long as

∂XY is not dampened, ∂EV remains adjusted, but as soon as ∂XY is dampened

∂EV becomes maladjusted and has to be dampened, too. The realization can be

built up in such a way that ∂EV is dampened immediately after ∂XY as required

by (g3) in the definition of an EV -reducible realization for the link case.

In case 2 the tendency ∂XY is an adjusted non-zero tendency at r(2, 1) and

does not become maladjusted during the dampening phase between r(2, 1) and

r(4, 1). Neither ∂XY nor ∂EV is dampened in this case. The values of their right

and left tendencies at r(4, 1) are the same ones as at r(2, 1) and therefore the same

ones as at p0.

Case 3 arises, if ∂XY and ∂EV are univalued zero tendencies at r(2, 1). Zero

tendencies are not dampened. Therefore, in this case, too, the values of the left

and right tendencies of ∂EV and ∂XY are the same ones as at r(2, 1) and r(4, 1).

At r(4, 1) a phase of activity 3 begins, if there are maladjusted tendencies at

r(4, 1). Such a phase ends at r(6, 1). We now examine what happens between

r(4, 1) and r(6, 1). It will become clear that the three cases 4, 5, and 6 shown by

Table 43 can arise with respect to the left and right tendencies of ∂XY and ∂EV

at r(6, 1). The three cases of Table 43 are numbered from 4 to 6 in order to avoid

confusion with the cases 1 to 3 of Table 42.

From now on we shall assume that the confluence for ∂EV has the form

∂EV = ∂XY . Analagous arguments are valid for ∂EV = −∂XY . In case 1

the tendency ∂XY is a non-zero tendency which has been dampened, because it

was maladjusted and ∂EV has been dampened, too. At r(4, 1) the tendency ∂EV

is maladjusted since we have ∂EV 6= 0 and ∂XYR = 0. The tendency ∂XY is also

maladjusted at r(4, 1) since it was maladjusted when it was dampened and since

by lemma 10 a maladjusted tendency remains maladjusted when other tendencies

are dampened. Therefore the realization can be built up in such a way that ∂EV

is adapted in the step from r(4, 1) to the next prestate and ∂XY is adapted in the

same adaptation phase as required by (g4). However the value of the right hand
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side of the confluence for ∂XY at r(4, 1) may be zero or the value of −∂XYL. If

it is zero, then case 6 of Table 43 is obtained. The other possibility leads to case

4.

We now look at case 2 of Table 42. Here ∂XY and ∂EV have not been

dampened and therefore are adjusted non-zero tendencies at r(4, 1). The right

and left tendencies of ∂XY and ∂EV are not changed by activity 3. Therefore

case 2 of Table 42 leads to case 5 of Table 43.

In case 3 of Table 42 the tendency ∂XY may be maladjusted at r(4, 1) and may

have to be adapted to a value unequal to zero. However ∂EV remains adjusted

in view of ∂XYR = 0 if this happens. This leads to case 4 of Table 43. If ∂XY is

adjusted at r(4, 1) then one arrives at case 6 of Table 43.

At r(6, 1) all tendencies are adjusted. In a phase of activity 4 beginning there,

adjusted non-zero tendencies are confirmed. Confirmation of an adjusted tendency

changes its confirmation status. In the case of a split tendency it also changes the

value of the right tendency.

We now want to examine what happens between r(6, 1) and r(8, 1). Consider

case 4 of Table 43. Here ∂XY is an adjusted split tendency. ∂EV becomes

a maladjusted mature zero tendency as soon as ∂XY is confirmed. Obviously

∂EV cannot be confirmed between r(6, 1) and r(8, 1). Nevertheless the realization

can be arranged as required by (g2). For this purpose one has to confirm ∂XY

just before r(8, 1). This can be done, since in view of lemma 4 in 4.6 the order

in which the adjusted non-zero tendencies are confirmed in a phase of activity

4 is arbitrary. In the step from r(8, 1) to the next prestate ∂EV can then be

adapted and confirmed in a phase of activity 1. In this way one meets requirement

(g2). After the confirmation of ∂EV the realization can be continued in any

way compatible with the definition of the readjustment process. The conditions

(g2), (g3), and (g4) concern applications of activities to ∂XY and ∂EV only, and

therefore cannot be violated after ∂XY and ∂EV have beome firm.

Now consider case 5 of Table 43. In case 5 the tendencies ∂XY and ∂EV are

adjusted non-zero tendencies and ∂EV can be confirmed immediately after ∂XY

such that condition (g2) is met. From r(8, 1) the realization can be continued in

any way compatible with the definition of the readjustment process.

In case 6 of Table 43 the left and right tendencies of ∂XY and ∂EV are all zero

at r(6, 1) and therefore are not changed by the confirmation of non-zero tendencies

between r(6, 1) and r(8, 1). At r(8, 1) a phase of activity 1 may begin. If ∂XY

is adapted and confirmed there, then ∂EV becomes mature and can be adapted

and confirmed immediately after ∂XY as required by (g2). The realization can

then be continued in any way compatible with the definition of the readjustment

process.
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It remains to show what has to be done, if ∂XY and ∂EV are still loose at

r(10, 1). From now on we shall assume that this is the case. At r(10, 1) the

tendencies ∂XY and ∂EV are univalued zero tendencies. The tendency ∂EV is

adjusted but ∂XY may be adjusted or not.

The construction of an EV -reducible realization will be continued in a recursive

way. It will be shown that at r(10, m), if it is reached, either ∂XY and ∂EV are

firm or both tendencies are loose univalued zero tendencies. Since a realization

ends after a finite number of steps, there must be a number m such that the answer

to the question of switch 12 after r(10, m) is NO. It will be discussed later what

happens after r(10, m). Let m be one of the numbers 1, . . . , m − 1. We proceed

from the assumption that ∂XY and ∂EV are loose univalued zero tendencies at

r(10, 1) and that m is greater than 1. We have to show that if ∂XY and ∂EV

are loose univalued tendencies at r(10, m) this is still true at r(10, m+ 1) unless

∂XY and ∂EV are firm at r(10, m+ 1).

In view of m < m the question of switch 12 is answered by YES at r(10, m)

At r(10, m) a phase of activity 3 begins which lasts up to r(6, m+ 1). Obviously

∂EV is adjusted at r(10, m) and therefore is not adapted between r(10, m) and

r(6, m + 1) as required by (g4). The situation at r(10, m) is similar to that at

r(4, 1), but with the difference that now we must be in case 3 of Table 42. Therefore

we come to case 4 or 6 of Table 43 at r(6, m+ 1).

In case 6 the tendency ∂XY may become mature between r(8, m + 1) and

r(10, m+1) and if this happens ∂EV can be adapted and confirmed immediately

after ∂XY as required by (g2), however, ∂XY and ∂EV are still loose at r(10, m+

1) then they are univalued zero tendencies there. Of course, whenever ∂XY and

∂EV have become firm, the realization can be continued in any way compatible

with the definition of the readjustment process. We have shown what we wanted

to show about r(10, m+ 1) for case 6.

Now assume that at r(6, m+ 1) the situation is like the one of case 4 of Table

43. Then ∂XY is an adjusted non-zero tendency at r(6, m+ 1), but ∂EV is still

an adjusted zero tendency. The realization can be arranged in such a way that

∂XY is confirmed at the end of the phase of activity 4 between r(6, m + 1) and

r(8, m+1). Then ∂EV can be adapted and confirmed in the step from r(8, m+1)

to the next prestate, as required by (g2). After this step the realization can be

continued in any way compatible with the definition of the readjustment process.

Now suppose that at r(10, m) the tendencies ∂XY and ∂EV are still loose

univalued zero tendencies. In view of lemma 6 at r(m, 10) all loose tendencies are

adjusted zero tendencies. A phase of activity 5 begins at r(10, m), if there are any

loose tendencies there. The order in which activity 5 is applied to loose tendencies

is arbitrary. If ∂XY and ∂EV are still loose at r(10, m), the tendency ∂EV can
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be confirmed immediately after ∂XY as required by (g2). We have shown how an

EV -reducible realization can be constructed. �

Lemma 30. Let B = (Λ,Γ) be a base and let EV be an eliminable variable in

B. Then the following statements hold:

(1) Let ω be a reanchoring (a shift or a lag extinction) pending at a state s of

B. Then an EV -reducible realization of the readjustment process running

in B and starting with p0 = p0(ω, s) exists.

(2) Let ω be a modifier pending at a state s of B. Then an EV -reducible

realization of the readjustment process running in the modified base Bω =

Mω(B) and starting with p0 = p0(ω, s) exists.

(3) Let ω be a perturbance of a tendency other than ∂EV pending at a state

s of B and let aM be a lasting state of the auxiliary base Bω = Mω(B).

Then an EV-reducible realization of the readjustment process running in

B and beginning with the return start q = p0(aM) exists. (See Table 26

in 5.8).

Proof. For the case that EV is a source each of the three statements is a

direct consequence of Theorem 7. In the following we shall assume that EV is a

link. Let ∂XY be the determinator of ∂EV . It follows by (4) in lemma 29 that

p0(ω, s) is EV -adjusted. Therefore the first statement holds.

Consider the case that ω is a tendency switch or a halfway switch of a current

tendency pending at s. Obviously p0(ω, s) is EV -adjusted in the hypothetical base

Bω if this current tendency is not ∂XY . If ω is a tendency switch or a halfway

switch of ∂XY then EV is a source in Bω. Therefore, the second statement holds

in this case, too.

Now consider the case that ω is a perturbance pending at s. Then EV is a

source in the auxiliary base Mω(B). The second statement holds in this case, too.

It remains to prove the third statement. In the auxiliary system Bω the con-

fluence for ∂EV is the same one as in B. Since aM is a state of Bω the confluence

for ∂EV is satisfied at aM in B and consequently also at p0(aM). This completes

the proof of the Lemma. �

6.9. The realization property

6.9.1. Definitions and notational conventions. In the remainder of this

chapter EV will always be an eliminable variable in a base B = (Λ,Γ) and B′

stands for the reduced base MEV (B). Moreover p0, . . . , pN will always be a fixed

but arbitrary EV -reducible realization in B. Similarly p00, . . . , p
0
N will be the pre-

liminary EV -reduction and p′0, . . . , p
′

L will be the EV -reduction of p0, . . . , pN . As

before the symbol R will be used for the right hand side of the confluence for ∂EV
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in B. The symbol λ will be used for the state mapping and π for the prestate

mapping from the states or prestates of B to the states and prestates of B′, re-

spectively. A top activity at pj with j = 0, . . . , N or at p′m with m = 0, . . . , L

is an activity of the highest priority among those activites for which at least one

directional of the required type is available at pj or p
′

m, in B and B′, respectively.

In this section it will be shown that the reduction p′0, . . . , p
′

L is a realization of

the readjustment process in B′. We refer to this as the realization property of

the EV -reduction. The realization property can be expressed by three conditions

(h1) to (h3) listed below:

(h1) The prestate p′1 results from the prestate p′0 by the application of a top

activity to a directional.

(h2) Let m be one of the numbers 1, . . . , L − 1. Then p′m results from p′m−1

by the application of an activity h to a directional of the required type

for it in B′ and p′m+1 results from p′m by the application of an activity k

to a directional of the required type for it in B′. Moreover for h 6= k no

directional of the required type for activity h is available at p′m in B′ and

activity k is the top activity at p′m in B′.

(h3) The prestate p′L is saturated in B′

We refer to the three conditions (h1), (h2), and (h3) as the readjustment rules.

It is clear that these three readjustment rules are equivalent to the statement that

p′0, . . . , p
′

L is a realization of the readjustment process in B′.

We shall sometimes speak of an activity k being applied to a directional in the

step from p′j to p′j+1 even if we did not yet show that p′0, . . . , p
′

L is a realization in

B′. We mean by this that p′j+1 results from p′j by the application of the activity

to the directional in B′.

6.9.2. Preview. In the following we shall provide an informal account of

what will be done in order to prove the realization property of the EV -reduction.

The elimination of EV replaces ∂EVR by the right hand side R of the confluence

for ∂EV . Therefore it is of crucial importance that ∂EVR and R have the same

value at every normal prestate in p0, . . . , pN . Otherwise a main term could have

a different value at a normal prestate pj in B and at p0j in B′. This would entail

a misrepresentation of the substantial relationship modelled by the concerning

confluence or restriction equation.

Lemma 31 concerns prestates pj+1 following an exceptional state pj. It is shown

that at such a prestate the values of ∂EVR and R are equal. These prestates are

not necessarily normal, but lemma 31 is important for showing by an induction

argument that the values of ∂EVR and R are equal at every normal prestate in

p0, . . . , pN . This is the content of lemma 32.
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Let pj be a normal prestate and let m = τ(j) be the renumbered index of p0j
in p′0, . . . , p

′

L. It has to be shown that a directional is of the required type for an

activity k at p′m if and only if the same directional is of the required type for the

same activity at p′m. This result, stated by lemma 33, has the consequence that

a top activity at pj is also a top activity at p′m. Lemma 33 is also important for

proving lemma 34 which makes the following statement: If in the step from pj
to pj+1, an activity k is applied to a directional then the application of the same

activity to the same directional leads from p′m to p′m+1 in B′.

Theorem 8 states the realization property of the EV -reduction. The proof

makes use of lemma 33 and lemma 34.

6.9.3. Derivation of the realization property.

Lemma 31. Let pj be an exceptional prestate in p0, . . . , pN . Then at pj+1 the

value of ∂EVR is equal to the value of the right hand side R of the confluence for

∂EV in B.

Proof. Assume that EV is a source. Then p0 is the only exceptional prestate

and ∂EV is adapted and confirmed in the step from p0 to p1. Moreover ∂EV is

firm at p1. Therefore the assertion holds in the source case.

Now assume that EV is a link with the determinator ∂XY . If at pj one of the

activities 1,4, or 5 is applied to ∂EV then in view of (g2) one of these activities

has been applied to ∂XY in the step from pj−1 to pj and the assertion holds at

pj.

Suppose that activity 2 is applied to ∂EV in the step from pj to pj+1. Then

(g3) the determinator ∂XY has been dampened in the step from pj−1 to pj. It

follows that the assertion holds at pj .

Suppose that activity 3 is applied to ∂EV in the step from pj to pj+1. In this

case by (g4) we must have pj = r(4, 1) and ∂XY as well as ∂EV must have been

dampened between r(2, 1) and r(4, 1). Therefore at r(4, 1) the right tendencies

∂XYR as well as ∂XYR are zero at pj . Therefore the assertion holds in this case,

too. This completes the proof of the lemma. �

Lemma 32. At every normal prestate pj in p0, . . . , pN the value of ∂EVR is

equal to the value of the right hand side R of the confluence for ∂EV .

Proof. Assume that EV is a source. Then p0 is exceptional and ∂EV is firm

at p1. Therefore the assertion holds in this case. In the following we shall assume

that EV is a link with the determinator ∂XY of ∂EV .

We first show that p0 is normal. Activities 1, 4, or 5 cannot be applied to ∂EV

in the step from p0 to p1 since otherwise one of these activites would have to be

applied to ∂XY . Similarly activity 2 cannot be applied to ∂EV in this step since
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∂XY would have to be dampened before. Activity 3 cannot be applied to ∂EV

in the step from p0 to p1 since at p0 the tendency ∂EV is univalued and adjusted

in view of (g1). It follows that p0 is normal.

We are going to use an induction argument. Since p0 is normal it is sufficient

to show that the assertion holds for pj if it holds for every normal prestate pk with

k < j.

Let pj be a normal prestate with j > 0 and assume that the assertion holds

for every normal prestate pk with k < j. If pj−1 is exceptional then the assertion

holds in view of lemma 33. In the following we assume that pj−1 is normal.

Consider the case that in the step from pj−1 to pj an activity has been applied

to a directional other than ∂XY . The tendency ∂XYR is not changed in this step

and also not ∂EVR since pj−1 is normal. Therefore in this case the assertion holds

for pj since it holds for pj−1. In the following we assume that in the step from

pj−1 to pj an activity has been applied to ∂XY .

It is not possible that in the step from pj−1 to pj one of the activities 1, 2, 4,

or 5 is applied to ∂XY , since in this case pj would have to be exceptional by (g2)

or (g3). Therefore activity 3 has been applied to ∂XY in the step from pj−1 to

pj. The prestate pj−1 is normal and the assertion holds for pj−1. The application

of activity 3 to ∂XY changes ∂XYL but neither ∂XYR nor ∂EVR. Therefore the

assertion holds for pj. This completes the proof of the lemma. �

Remark. The proof of the lemma has shown that p0 is normal if EV is a link.

Lemma 33. Let pj with j = 0, . . . , N−1 be a normal prestate and let m = τ(j)

be the renumbered index of p0j in p′0, . . . , p
′

L. Then a directional other than ∂EV

is of the required type for an activity k at p′m in B′ = MEV (B) if and only if it is

of the required type for activity k at pj in B.

Proof. Whether a directional is of the required type for an activity k or

not depends on whether it is loose or firm, mature or immature, adjusted or

maladjusted, and in the case of a tendency, whether it is univalued or split and

whether it is a zero tendency or non-zero tendency.

The prestate mapping removes ∂EVL, ∂EVR and the confirmation status of

∂EV and leaves everything unchanged. The construction of B′ involves a replace-

ment of ∂EV by R in the main terms of confluences and restriction equations

and subsequent equivalent transformations of these main terms. At pj we have

∂EVR = R in view of lemma 32. Consider the properties, on which it depends

whether a directional is of the required type for activity k or not. For each of

these properties it follows by what has been said above, that a directional other

than ∂EV has this property at p′m in B′ if and only if it has this property at pj
in B. Therefore the assertion of the lemma holds. �
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Lemma 34. Let pj with j = 0, . . . , N − 1 be a normal prestate and let m =

τ(j) be the renumbered index of p0j in p′0, . . . , p
′

L. If an activity k is applied to a

directional in the step from pj to pj+1, then p′m+1 results from p′m by the application

of the same activity to the same directional in B′.

Proof. Let pj+i be the next normal prestate after pj. Since pN is normal

there is such a prestate in p0, . . . , pN . We have m′ + 1 = τ(j + i). Let k be the

activity applied in the step from pj to pj+1. If the directional to which activity

k is applied is a system specific restriction, then we must have k = 1 in view of

lemma 1 in 4.5. Since pj is normal the directional to which activity k is applied

in the step from pj to pj+1 cannot be ∂EV .

Suppose that in the step from pj to pj+1 activity k is applied to a tendency

∂WZ. Then the values of ∂WZL, ∂WZR, or the confirmation status of ∂WZ may

be changed in this step but nothing else. By lemma 33 the tendency ∂WZ is of

the required type for the application of activity k at p′m in B′. In view of the

definition of the prestate mapping it is clear that p0j+1 results from p0j = p′m by

the application of activity k to ∂WZ in B′. Essentially the same argument can

be used in the case that activity 1 is applied to a system specific restriction �UY

in the step from pj to pj+1.

If pj+1 is normal then we have p′m+1 = p0j+1. The assertion of the lemma holds

in this case. Suppose that there are exceptional prestates pj+1, . . . , pj+i between

pj+1 and pj+i. Then in the steps from pj+1 to pj+i only ∂EVL, ∂EVR and the

confirmation status of ∂EV can be changed. The prestate mapping π removes

these components and changes nothing else. Therefore we have

p0j+1 = p0j+i = p′m+1

It follows that the assertion of the lemma holds. �

Theorem 8. Let EV be an eliminable variable in a base B = (Λ,Γ) and

let p0, . . . , pN be an EV -reducible realization of the readjustment process in B.

Moreover let p′0, . . . , p
′

L be the EV -reduction of p0, . . . , pN . Then p′0, . . . , p
′

L is

a realization of the readjustment process in the reduced base B′ of B after the

elimination of EV .

Corollary 2. Let s and s′ be the states generated by pN and p′L in B and

B′ respectively. Then we have s′ = λ(s), where λ is the state mapping for the

elimination of EV .

Proof. We first look at the source case. Assume that EV is a source. Then

p0 is the only exceptional prestate of p0, . . . , pN and EV is adapted and confirmed

in the step from p0 to p1. If activity k is applied in the step from p1 to p2 then we

have k = 1 or activity k is the top activity at p1, since p0, . . . , pN is a realization
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of the readjustment process. Of course, in the case k = 1 activity k is also the top

activity at p1. It follows by lemmas 33 and 34 that (h1) is satisfied. Conditions

(h2) and (h3) are also consequences of these lemmas together with the fact that

p0, . . . , pN is a realization in B. Therefore the assertion of the theorem holds in

the source case. The corollary will be proven later.

From now on we assume that EV is a link and that ∂XY is the determinator of

∂EV . In view of the remark after the proof of lemma 32 the prestate p0 is normal.

Therefore it follows by lemma 34 that in the steps from p′0 to p′1 the same activity

is applied to the same directional. Moreover this activity is the top activity at p0
in B. It follows by lemma 33 that the same activity is the top activity at p′0 in

B′. Therefore (h1) holds.

Since pN is saturated it follows by the definition of B′ together with the defini-

tion of the prestate mapping that in view of lemma 32 the prestate p′L is saturated

in B′. Therefore (h3) holds. It remains to show (h2).

As in (h2) let m be one of the integers 1, . . . , L− 1. Let j be the number with

p0j = p′m. Moreover let i be the number with p0i = p′m−1. It follows by the definition

of p′0, . . . , p
′

L that pj is normal and that pi is the last normal prestate before pj
in p0, . . . , pN . Assume that in the step from pi to pi+1 activity h is applied to a

directional �V X or ∂V Y and that in the step from pj to pj+1 activity k is applied

to a directional �UX or ∂UY . It follows by lemma 34 that p′m results from p′m−1

by the application of activity h to �V X or ∂V Y , resp., in B′, and that p′m+1

results from p′m by the application of activity k to �UX or ∂UY , resp., in B′.

Consider the case i = j−1 in which pj−1 is normal. Condition (h2) is satisfied

for h = k. In the following we assume h 6= k. Since p0, . . . , pN is a realization of

the readjustment process in B it follows that no directional of the required type

for activity h is available at pj and that activity k is the top activity at pj. It

is a consequence of lemma 33, that at p′m no directional of the required type for

activity h is available in B′ and that activity k is the top activity at p′m in B′.

Therefore (h2) is satisfied if pj−1 is normal. From now on we assume that pj−1 is

exceptional.

In the following it will be shown that there can be at most two exceptional

steps between pi+1 and pj . In the step from pi to pi+1 activity h is applied to a

directional other than ∂EV . Let f be the number of the activity applied to ∂EV

in the step from pi+1 to pi+2. For the case that pi+2 is exceptional let g be the

number of the activity applied to ∂EV in the step from pi+2 to pi+3.

It will also be shown that there are only six possible constellations of the

parameters h, f and g. These constellations correspond to the rows of Table 44.

If there is only one exceptional step from pi+1 to pj , then a dash is shown in the

column for g. Five further columns correspond to the possible values of k.
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Steps from pi to pj
The step from pj to pj+1

activity k

h f g 1 2 3 4 5

1 1 −

4 4 −

5 5 −

2 3 −

2 2 3

4 1 −

1

2 3 4

5 6 7 8 9

Table 44. Activity number constellations

Table 44 indicates “areas” of activity number constellations. These areas are

numbered from 1 to 9. The number of an area is indicated in its upper right

corner. Some of these areas are crossed out. As we shall see later the crossed out

areas contain impossible activity number constellations. A case distinction based

on the nine areas will be used in order to prove that (h2) is satisfied.

We now turn our attention to the seven possibilities for h, f, and g in Table 44.

With the help of a case distinction based on the value of f it will be shown that

there are no other possibilities and that there cannot be more than two exceptional

steps between pi+1 and pj.

Suppose that f has one of the values 1, 4, or 5. After the application of one

of these activities to ∂EV this tendency is firm. Moreover, by (g2), immediately
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before this, one of these activities (not necessarily the same one) is applied to

∂XY . Therefore there is only one exceptional step between pi+1 and pj (?), i.e.

we have j = i+ 2.

We now show that the following statements hold

(i) h = 1 implies f = 1

(ii) h = 5 implies f = 5

(iii) h = 4 implies f = 1 or f = 4

(iv) f = 1 implies h = 1 or h = 4

(v) f = 4 implies h = 4

(vi) f = 5 implies h = 5.

If ∂XY is adapted and confirmed then ∂EV becomes mature and by (g2) must

be adapted and confirmed in the next step. This yields (i).

The flow chart of Figure 8 in 4.5 shows that only activity 5 can be applied to

∂EV after activity 5 has been applied to ∂XY . This yields (ii).

Assume that activity 4 is applied to ∂XY . Then by (g2) the phase of activity

4 either continues with the application of activity 4 to ∂EV or a new phase begins

after the confirmation of ∂XY . Since ∂EV has become mature, activity 1 is the

top activity at the beginning of the new phase and must be applied to ∂EV . This

yields (iii).

Statement (iv) follows by (g2) and (ii). Similarly (v) follows by (g2) together

with (i) and (ii). Finally (vi) follows by (g2) together with (i) and (iii).

It can be seen that the four possibilities for f = 1, 4, 5 compatible with (iv),

(v) or (vi) are covered by Table 44. We now turn our attention to the cases f = 2

and f = 3.

Assume f = 2. In view of (g3) we must have h = 2. This means that ∂XY and

∂EV are both dampened. At r(4, 1) both tendencies are split non-zero tendencies.

The situation at r(4, 1) is described by case 1 of Table 43 (?). In view of (g1) the

tendency ∂EV was adjusted at p0 but since the value of ∂XYR changed from −

to + to zero, ∂EV is maladjusted at r(4, 1) and therefore is adapted in the step

from r(4, 1) to the next prestate. Consequently we have g = 3. By lemma 10 a

dampened maladjusted tendency cannot become adjusted by later dampenings.

Therefore not only ∂EV but also ∂XY is maladjusted at r(4, 1) and must be

adapted after ∂EV in the same adaptation phase. It follows that no exceptional

step immediately follows the adaptation of ∂EV .

The dampening of ∂EV may be followed by further dampenings or immediately

by the adaptation of ∂EV . In the first case we have f = 3 and h = 2 and there is

exactly one exceptional prestate between pi+1 and pj. In the second case we have

h = 2 as well as f = 2 and g = 3.
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It is now clear that there can be at most two exceptional steps between pi+1

and pj and that Table 44 represents all possibilities with respect to h, f, g, and k.

It remains to show that (h2) is satisfied in each of the areas 1 to 9 of Table 44.

In area 1 we have h = f . Moreover, in this area there is exactly one exceptional

step between pi+1 and pj. Since p0, . . . , pN is a realization of the readjustment

process, it follows that for k 6= f no directional of the required type for activity f

is available at pj and that activity k is the top activity at pj. In view of h = f it

follows by lemma 33 and lemma 34 that (h2) is satisfied for the activity number

constellations in area 1.

We now examine areas 2, 3, and 4. It has been pointed out above that not

only ∂EV but also ∂XY is maladjusted at r(4, 1) if ∂XY and ∂EV have been

dampened before. Therefore ∂XY has to be adapted after ∂EV in the same

adaptation phase. It follows that only k = 3 is possible in the rows with h = 2.

Accordingly the areas 2 and 4 are crossed out.

Consider a constellation in area 3. Dampening ad adaptation do not change the

confirmation status. Therefore no loose directional has become firm in the steps

after the end of the initial phase of activity 2 – if there was one – until pj . The

same is true for the steps from p0 to pj if there was no such phase. Consequently

no directional can have become mature in these steps. It follows that at pj no

directionals of the required type for activity 1 are available. Therefore activity 1

cannot be the top activity at pj.

Suppose that at pj a tendency ∂WZ is a maladjusted non-zero tendency. Since

the adaptation of ∂EV at r(4, 1) does not change anything else than the value

of ∂EVL the tendency ∂WZ must have been a maladjusted non-zero tendency at

r(4, 1). In this case ∂WZ would have to be dampened in the step from r(4, 1) to

the next prestate contrary to the definition of r(4, 1). Therefore activity 2 cannot

be the top activity at pj. It follows that activity 3 is the top activity at pj. In

view of lemma 33 and lemma 34 this yields the conclusion that (h2) is satisfied in

area 3.

Now assume h = 4 and f = 1. In this case activity 4 has been applied to ∂XY

at the end of a phase of activity 4 between r(6, m) and r(8, m). In the step from

r(8, m) to the next prestate ∂EV is adapted and confirmed. This next prestate is

the prestate pj. The flow chart of Figure 8 shows that we have k = 1 if at pj the

answer to the question of switch 10 is YES. If this answer is NO and the answer

to the question of switch 12 is YES, then at least one maladjusted tendency must

be adapted at rectangle 7. In this case we have k = 3. It is also possible that at

pj the answer to the question of switch 10 as well as to the question of switch 12

is NO. In this case we have k = 5. It is clear that we cannot have k = 2 or k = 4.

Therefore areas 6 and 8 are crossed out.
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At r(6, m) all tendencies are adjusted. It is a consequence of lemma 4 that an

adjusted non-zero tendency remains an adjusted non-zero tendency if activity 4 is

applied to another tendency. At r(8, m) all non-zero tendencies are adjusted and

firm and all maladjusted tendencies including ∂EV are zero tendencies. This is

not changed by adaptation and confirmation of ∂EV in the step from r(8, m) to

pj. Therefore at pj no directionals of the required type for activity 4 are available.

It follows by lemma 33 that at p′m no directionals of the required type for activity

4 in B′ are available. Consequently (h2) is satisfied in the areas 5, 7, and 9 if k is

the top activity at p′m in B′. In view of lemma 33 this is true if activity k is the

top activity at pj . It remains to show that this is the case.

Obviously activity 1 is the top activity at pj for k = 1. In the following assume

k 6= 1. In this case the phase of activity 1 beginning at r(8, m) ends at pj and there

a phase of activity k begins. Since p0, . . . , pN is a realization of the readjustment

process, activity k must be the top activity at pj . Therefore (h2) holds.

It remains to prove the corollary. We have pN = p0(s1) and p′L = p′0(s
′

1). In

view of statement (2) of lemma 29 in 6.6 it follows by p′L = π(pN) that we have

s′1 = λ(s1). This completes the proof of the theorem including its corollary. �

6.10. Invariance of the transition diagram

6.10.1. Definition of invariance of the transition diagram. We continue

to use the notational conventions introduced in 6.7.1 and 6.9.1. In 6.7.1 it has been

explained what it means that the result of a transition cause ω at s is invariant

under the state mapping. Lemma 37 will show that the result of a main transition

cause ω at s is invariant under the state mapping.

In this section and the following one we shall look at transition diagrams

and extended transition diagrams. The definition of these diagrams involves the

priority order ρ and the perturbance assignment α. Therefore it is not sufficient

to talk about a base B = (Λ,Γ) and its modifications. It is necessary to deal with

full qualitative dynamic systems. In the remainder of this chapter Φ = (Λ,Γ, ρ, α)

will always be an arbitrary but fixed qualitative system with the base B = (Λ,Γ)

with at least one removable variable. Moreover RV will be a removable variable

of Φ.

The definition of the reduced system Φ′ = (Λ′,Γ′, ρ′, α′) of Φ after the elim-

ination of RV has been introduced in 6.5. In the remainder of this chapter

B′ = (Λ′,Γ′) is the base of Φ′. Lemma 26 in 6.4 has shown that the state mapping

λ is a one-to-one mapping of the set of all states for B onto the set of all states

for B′. It follows by lemma 27 that a main transition cause ω is invariant under

the state mapping, i.e. it is pending at λ(s) if and only if it is pending at s. In
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view of the definition of the reduced priority ranking ρ′ of Φ′ we have

ρ′(ω, s′) = ρ(ω, s) for s′ = λ(s)

if ω is a main transition cause pending at s.

We say that the tentative transition diagram of Φ is invariant under the

elimination of RV , if for every main transition cause ω of positive rank ρ(ω, s)

pending at a state s for B the result of ω at s is invariant under the state mapping

in the sense of 6.7.1.

Let k∗ be the rank of the transition diagram of Φ. The transition diagram of

Φ′ is invariant under the elimination of RV if the transition diagram of Φ′

has the same rank k∗ and in addition to that every main transition cause ω with

0 < ρ(ω, s) ≤ k∗

pending at a state s for B the result of ω at s is invariant under the state mapping

λ.

Lemma 35 will show that for a shift or a lag extinction ω pending at a state

s the result of ω at s is invariant under the state mapping. This result will be

extended to all main transitions. With the help of these lemmas it can then

be proven that the tentative transition diagram and the transition diagram are

invariant under the elimination of RV . This will be the content of theorem 9.

Comment. The invariance of the tentative transition diagram means that in

the transition from Φ to Φ′ the graph structure is not changed. A node which

represents a state s in the diagram for Φ, represents the state λ(s) in the diagram

for Φ′. Nothing else is different. An edge represents the same transition cause in

the two diagrams, and by the definition of the reduced priority ranking ρ′, the rank

of a transition cause also remains the same one.

What has been said about the tentative transition diagrams, also holds for the

transition diagrams of Φ and Φ′. The rank k∗ is the same one for the two transition

diagrams.

6.10.2. Derivation of invariance results.

Lemma 35. Let ω be a shift or a lag extinction pending at a state s of B. Then

the result of ω at s is invariant under the state mapping λ.

Proof. In view of the removability conditions (e2) and (e4) the variable RV

is unscaled and lag free. Therefore a shift must be the shift of another variable

and a lag extinction must concern a lagged tendency of another variable.

Let p0 = p0(ω, s) be the transition start for ω at s. In view of statement (1) in

lemma 30 an RV -reducible realization beginning with p0 exists. Let p0, . . . , pN be

such a realization and let p′0, . . . , p
′

L be the RV -reduction of p0, . . . , pN . Moreover
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let s1 and s′1 be the states for B and B′ generated by pN and p′L, respectively.

In view of the corollary of theorem 8 we have s′1 = λ(s1). Therefore the result

s1 = z(ω, s) of ω at s is invariant under the state mapping. This completes the

proof of the lemma. �

Lemma 36. Let B be a base with a removable variable RV and let B′ be the

RV -reduction MRV (B) of B. Let ω be a modifier, Bω be the modified base Mω(B)

and B′

ω the RV -reduction MRV (Bω) of Bω. Moreover let s be a state for B,

let p0, . . . , pN be an RV -reducible realization of the readjustment process in Bω

beginning with p0 = p0(s), and let p′0, . . . , p
′

L be the RV -reduction of p0, . . . , pN .

Then the following statements (1) and (2) are true:

(1) Let s′ = λ(s) be the image of s under the state mapping λ from the states

of B to the states of B′. Then p′0 is the prestate p′0(s
′) of s′ in B′.

(2) If and only if the state s1 generated by pN in Bω is also a state for B, the

state s′1 generated by p′L in Bω is a state for B′.

Proof. For the purpose of proving (1) we distinguish between the source case

and the link case. Let RV be a link. Then it follows by the remark after the proof

of lemma 32 that p0 is normal. Therefore we have p′0 = π(p0(s)) in the link case.

In view of statement (2) of lemma 9 this yields p′0 = p′0(s
′).

Now assume that RV is a source. In this case p0 is exceptional. ∂EV is

adapted and confirmed in the step from p0 to p1. The prestate mapping from the

prestates of Bω to the prestates of B′

ω is not different from the prestate mapping

π from the prestates of B to the prestates of B′. In both cases the specifications

of ∂RVL, ∂RVR, and the confirmation status of ∂RV are deleted and nothing else

is changed. Therefore the definition of the RV -reduction for the source case yields

p′0 = π(p1). However, adaptation and confirmation does not change anything

else than the specifications which are deleted by the prestate mapping. Therefore

we also have p′0(π(p0(s)). As in the link case this yields p′0 = p′0(s
′) in view of

statement (2) of lemma 29. Consequently (1) holds.

Let λω be the state mapping from the states for Bω to the states for B′

ω. The

sets of states are different in B and Bω. Therefore the mappings λω and λ are

different. However, if s1 is not only a state of Bω but also of B then we have

λ(s1) = λω(s1), since λ and λω delete the same specifications of a state. If s′1 is

not only a state for B′

ω but also for B′, then λ−1(s′1) = λ−1
ω (s′1) must hold since

the confluence for ∂RV is the same one in B and Bω. Therefore (2) holds. This

completes the proof of the lemma. �

Remark. The proof of lemma 36 has shown that we have λ(s1) = λω(s1) if s1
is a state of Bω and a state of B.
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Lemma 37. let ω be a main transition cause pending at a state s for B. Then

the result of ω at s is invariant under the state mapping.

Proof. By lemma 35 the assertion is true, if ω is a shift or a lag extinction.

It remains to show that the assertion holds if ω is a tendency switch.

Let ω = [∂XY → d] be a tendency switch pending at a state s for B. In view of

the removability condition (e5) the confluence for ∂RV is monocausal. Therefore

a tendency switch of ∂RV is impossible. Consequently ∂RV is not the tendency

∂XY . (However, ∂XY may be the determinator of ∂RV , if RV is a link)

The transition start p(ω, s) for ω at s is the prestate p0(s) of s. The prestate

p0(s) is the beginning of a readjustment process in the hypothetical base Bω for

ω. According to statement (2) of lemma 30 an RV -reducible realization in Bω be-

ginning with p0 = p0(s) exists. Let p0, . . . , pN be such an RV -reducible realization

in Bω and let p′0, . . . , p
′

L be the RV -reduction of p0, . . . , pN . In view of statement

(1) of lemma 36 we have

p′0 = p0(s
′) with s′ = λ(s)

According to lemma 27 transition causes are invariant with respect to the state

mapping. Therefore ω is pending at s′ = λ(s) in B′. The transition start p0(ω, s
′)

for ω at s′ is the prestate p′0(s
′) of s′ in B′.

Lemma 28 shows that MRV and Mω commute. Consequently we have

B′

ω = MRV (Bω) = Mω(B
′)

The base B′

ω is not only the RV -reduction of Bω but also the hypothetical base for

the tendency switch ω at s′ in B′. In order to find out whether ω is feasible at s′ in

B′, one has to run the readjustment process in B′

ω beginning with p′0(s
′). In view

of statement (1) of lemma 36 the RV -reduction p′0, . . . , p
′

L is such a realization.

The tendency switch ω is feasible, if a state of B is generated by p′L in B′

ω.

Let s1 be the state for B′

ω generated by pN and let s′1 be the state generated

by p′L in B′

ω. The tendency switch ω is feasible at s in B, if s1 is not only a state

of Bω but also a state of B. Similarly ω is feasible at s′ in B′ if s′1 is not only

a state of B′

ω but also of B′. It follows by statement (2) of lemma 36 that ω is

feasible at s in B if and only if ω is feasible at s′ in B′.

As in the proof of lemma 36 let λω be the state mapping from the states of

Bω to the states of B′

ω. The corollary of Theorem 8 applied to Bω and B′

ω instead

of B and B′ yields the conclusion that s′1 = λω(s1) holds. In view of the remark

after the proof of lemma 36 we have s′1 = λ(s1) if ω is feasible at s. Since in this

case s1 is the result z(ω, s) of ω at s and s′1 is the result z
′(ω, s′) of ω at s′ we can

conclude that a feasible tendency switch is invariant under the state mapping.
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It remains to show that the assertion holds if ω is semifeasible or infeasible.

Assume that ω = [∂XY → d] is not feasible. Then ω must be a tardy tendency

switch, since by theorem 4 immediate tendency switches are always feasible. We

have d 6= 0 and at the state s the value of ∂XY is −d.

In order to find out whether ω is semifeasible or infeasible one has to examine

the halfway switch µ = [∂XY → 0]. The conclusion that a semifeasible tendency

switch is invariant under the state mapping can be reached in the same way as

the analogous conclusion about feasible tendency switches derived above. The

hypothetical base Bµ and its RV -reduction B′

µ take the place of Bω and B′

ω but

otherwise almost literally the same arguments apply.

As we have seen above ω is feasible at s if and only if ω is feasible at s′ in

B′. In the same way we can derive the following statement: A tendency switch

ω which is not feasible at s is semifeasible at s if and only if ω is semifeasible at

s′ = λ(s) in B. It follows that ω is infeasible at s if and only if ω is infeasible at

s′ in B′. Moreover we have

z′(ω, λ(s)) = λ(z(ω, s))

if ω is semifeasible at s. We can conclude that the result of ω is invariant under

the state mapping, if ω is semifeasible or infeasible at s. This completes the proof

of the lemma. �

Theorem 9. Let Φ = (Λ,Γ, ρ, α) be a qualitative dynamic system and let RV

be a removable variable for Φ. Then the tentative transition diagram of Φ as well

as the transition diagram of Φ is invariant under the elimination of RV .

Proof. The invariance of the tentative transition diagram is an immediate

consequence of lemma 37. Let ω be a main transition cause at a state s and let

s′ = λ(s) be the image of s under the state mapping. In view of the definition of

the reduced priority ranking ρ′ after the elimination of RV we have

ρ′(ω, λ(s)) = ρ(ω, s)

Consider a sequence s1, s2, . . . of states for Φ and let s′1, s
′

2, . . . with s′i = λ(si) be

the sequence of the images of s1, s2, . . . under the state mapping. It is clear that

s′1, s
′

2, . . . is a tentative path for Φ′ if and only if s1, s2, . . . is a tentative path for

Φ. It can also be seen that s′1, s
′

2, . . . has an unresolved shift or an unresolved

lag extinction, if and only if s1, s2, . . . has an unresolved shift or an unresolved

lag extinction (se 3.10). In this respect it is important that in view of (e2) and

(e4) there cannot be any shifts of RV or lag extinctions of ∂RV −. It follows

that s′1, s
′

2, . . . is a permissible path for Φ′ if and only if s1, s2, . . . is a permissible

path for Φ. Moreover, the rank of s′1, s
′

2, . . . is equal to the rank ofs′1, s
′

2, . . .. It

follows that the tentative transition diagram of Φ is well structured, if and only
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if the tentative transition diagram of Φ′ is well structured. By theorem 6 in 5.7

the tentative transition diagram of Φ is well structured and therefore the tentative

transition diagram of Φ′ is well structured, too. It can also be seen that the rank k∗

of the tentative transition diagram of Φ is also the rank of the tentative transition

diagram of Φ′. Consequently the transition diagram of Φ is invariant under the

elimination of RV . This completes the proof of the theorem. �

6.11. Stability invariance

6.11.1. Invariance of notions connected to stability. The use of nota-

tional conventions introduced in 6.7.1, 6.9.1, and 6.10.1 is continued. In 6.7.1 it has

been explained what it means that the result of a perturbance ω at a potentially

stationary state s for Φ is invariant under the state mapping.

We say that stationarity in Φ is invariant under the elimination of RV if

the following is true: s′ = λ(s) is stationary in Φ′ if and only if s is stationary in

Φ. The extended transition diagram is called invariant under the elimination

of RV if the following conditions (i1), (i2), and (i3) are satisfied:

(i1) The transition diagram of Φ is invariant under the elimination of RV .

(i2) Stationarity in Φ is invariant under the elimination of RV .

(i3) At every stationary state s for Φ and for every expected perturbance

ω ∈ α(s), the result of ω at s is invariant under the state mapping.

In 5.9 several concepts related to stability and instability have been introduced.

Definitions have been given for the seven terms shown in the fields of Table 45.

These notions have been defined by conditions on permissible paths in the transi-

tion diagram starting from reentry states.

Properties of

ω and s ∗) s alone ∗)

Instability
properties

destabilizable unstable

escapable repulsor

unreachable

Stability
properties

stable

recaptor

Table 45. Seven stability and instability properties

∗) Here s is a stationary state and ω ∈ α(s) is an expected perturbance at s,

where α is the perturbance assignment of Φ.

Some of the terms in Table 45 express properties of a perturbance ω and a

stationary state s and others stand for properties of a stationary state s alone.
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Some of the notions expressed by these terms are stability properties and others

are instability properties. Table 45 exhibits these distinctions. All properties

of ω at s are instability properties. Therefore the lower left field of Table 45 is

empty.

Each of the properties of ω and s in Table 45 is invariant under the elim-

ination of RV if the following is true: The perturbance ω has this property at

s′ = λ(s) in Φ′ if and only if it has it at s in Φ. This definition presupposes invari-

ance of stationarity in Φ. Similarly a property of s in Table 45 is invariant under

the elimination of RV if the following is true: The stationary state s′ = λ(s)

has this property in Φ′ if and only if s has it in Φ.

It is the goal of this section to derive the invariance of the extended transition

diagram and of the seven stability and instability properties under the elimination

of RV . This will be the content of Theorem 10. As a first step towards this goal

lemm 38 will establish the invariance of stationarity.

For the purpose of proving theorem 10 we need the concept of the immediate

transition diagram of an auxiliary base Bω of B. This diagram is a directed

graph with an immediate transition cause attached to each edge. The nodes repre-

sent the states of Bω. The edges represent immediate transitions. The direction of

an edge goes from a state u to the transition result v of the immediate transition

cause µ attached to the edge. The diagram represents all immediate transitions

pending at a state.

Consider an auxiliary base Bω of B for a perturbance ω of a tendency other

than ∂RV . It is clear that RV is eliminable in Bω. Let B
′

ω be the reduction of Bω

after the elimination of RV . We say that the immediate transition diagram of Bω

is invariant under the elimination of RV , if the immediate transition diagram

for B′

ω is the same one as that for Bω with the only difference that a node, which

represents u in the diagram of Bω, represents λω(u) in the diagram for B′

ω. Here

λω is the state mapping of Bω under the elimination of RV . The invariance of Bω

under the elimination of Bω will be established by lemma 39.

Another concept which will be needed is that of “parallel” reentry histories for

Φ and Φ′. The notion of a reentry history has been described by Table 26 in 5.8.

A reentry history in Φ is a sequence

s, ω, p0, q0, a0, . . . , aM , q, p, e

in which s is a stationary state of Φ and ω is an expected perturbance ω ∈ α(s)

at s. In addition to this we have p0 = p0(s) and q0 = hω(p0) as well as a0 = g(q0).

Moreover a0, . . . , aM is an immediate transition chain for Bω, we have q = p0(aM)

and p = h(q) as well as e = g(p). A reentry history

s′, ω′, p′0, q
′

0, a
′

0, . . . , a
′

M , q′, p′, e′



6.11. STABILITY INVARIANCE 177

in Φ′ is defined analogously.

We say that two reentry histories

s′, ω′, p′0, q
′

0, a
′

0, . . . , a
′

M , q′, p′, e′

in Φ′ and

s, ω, p0, q0, a0, . . . , aM , q, p, e

in Φ are parallel to each other if the following four parallelity conditions are

satisfied:

(j1) s′ = λ(s)

(j2) ω′ = ω

(j3) a′m = λω(am) for m = 1, . . . ,M

(j4) e′ = λ(e)

Here λω is the state mapping for Bω under the elimination of RV . It will be shown

that for every reentry history in Φ there is exactly one parallel reentry history in

Φ′ and vice versa. This will be the content of lemma 40.

The term “stability invariance” is meant to include all the invariance notions

connected to stability introduced above, the invariance of the extended transition

diagram and the invariance of the seven stability and instability properties in

Table 45. However, this term will only be used informally.

6.11.2. Derivation of stability invariance.

Lemma 38. Let Φ be a qualitative dynamic system and let RV be a removable

variable of Φ. Then stationarity in Φ is invariant under the elimination of RV .

Proof. As before let B be the base of Φ and let B′ be the reduction of B

after the elimination of RV . Moreover let λ be the state mapping for B under the

elimination of RV . In view of the remark after lemma 27 a state s′ = λ(s) for B′

is potentially stationary in Φ′ if and only if s is potentially stationary in Φ.

In 3.6 a stationary state s has been defined as a potentially stationary state

with the additional property that φ1(s) is empty or contains no other main transi-

tion causes other than infeasible tardy tendency switches. Main transition causes

are invariant under the state mapping according to lemma 27 and their results are

invariant under the state mapping by lemma 37. In view of the definition of the

reduced priority ranking ρ′ for B′ in 6.5 it follows that the assertion holds. This

completes the proof of the lemma. �

Lemma 39. Let Bω be an auxiliary base of the base B of Φ for a perturbance ω

other than ∂RV . Then the immediate transition diagram of Bω is invariant under

the elimination of RV .
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Proof. Let B′

ω be the reduction of Bω after the elimination of RV and let

λω be the state mapping of Bω under the elimination of RV . The state mapping

λω is a one-to-one mapping from the set of all states for Bω onto the set of all

states of B′

ω. The immediate transition causes represented by the edges of the

immediate transition diagram are main transitions. Therefore the invariance of

the immediate transition diagram of Bω is an immediate consequence of lemma

37, applied to Bω instead of B. This completes the proof of the lemma. �

Lemma 40. let Φ be a qualitative dynamic system, let RV be a removable

variable in Φ and let Φ′ be the reduction of Φ after the elimination of RV . Then

there is exactly one parallel reentry history in Φ′ for every reentry history in Φ.

Similarly there is exactly one parallel reentry history in Φ for every reentry history

in Φ′.

Proof. Consider a reentry history

s, ω, p0, q0, a0, . . . , aM , q, p, e

It will now be shown that there is exactly one reentry history

s′, ω, p′0, q
′

0, a
′

0, . . . , a
′

M , q′, p′, e′

such that the four parallelity conditions are satisfied. It follows by statement (2)

of lemma 29 that we have

p′0(s
′) = π(p0(s))

It is a consequence of lemma 30 that an RV -reducible realization of the readjust-

ment process in the auxiliary base beginning with p0 = p0(s) exists. It follows by

the corollary of Theorem 8 together with Theorem 3 that a readjustment process

in the RV -reduction B′

ω of Bω beginning with p′0(s
′) leads to a′0 = λω(a0). For

m = 1, . . . ,M define a′m = λ(am). Since a0, . . . , am is an immediate transition

chain in Bω it is a consequence of lemma 39 that a′0, . . . , a
′

M is an immediate

transition chain for B′

ω.

The set of prestates is the same one for B and Bω. The same is true for B′

and B′

ω. The prestate mapping π maps prestates of B to prestates of B′ and it

also maps prestates of Bω to prestates of B′

ω. In both cases the specifications of

∂RVL and ∂RVR and the confirmation status of ∂RV are taken out and nothing

else is changed. We have q = p0(aM ). This means that right and left tendencies

in q have the same value as in aM and the confirmation status of every directional

in q is L. There are no other differences between q and p0(aM). This means that

right and left tendencies in q have the same value as in aM and the confirmation

status of every directional in q is L. There are no other differences between q and

p0(aM). The relationship between q′ = p′0(a
′

M) and a′M is analogous. In view of

a′M = λω(aM ) the state a′M results from aM by taking out the specification of ∂RV
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without changing anything else. It can be seen easily that the same end result is

obtained if on the one hand first a′M = λω(aM) is formed and then p′0(a
′

M ) or on

the other hand first q = p0(aM) and then π(q). Therefore we have

q′ = π(q)

In view of statement (3) of lemma 30 an RV -reducible realization of the read-

justment process running in B and beginning with q exists. It follows by the

corollary of Theorem 8 together with Theorem 3 that a readjustment process in

the RV -reduction B′ of B beginning with q′ leads to p′ = π(p) and from there to

e′ = λ(e).

We have constructed a reentry history

s′, ω, p′0, q
′

0, a
′

0, . . . , a
′

M , q′, p′, e′

for B′ which satisfies the four parallelity conditions. The construction also shows

that there is no other reentry history for B′ which is parallel to the reentry history

s, ω, p0, q0, a0, . . . , aM , q, p, e. As far as s and ω is concerned this follows by (j1)

and (j2). The definition of a reentry history then determines p′0 and a′0. Condition

(j3) requires a′m = λ(am) for m = 1, . . . ,M . Finally q′, p′ and e′ are determined

by the definition of a reentry history.

It remains to show that there is exactly one parallel reentry history in Φ for

every reentry history. Consider an arbitrary reentry history

s′, ω, p′0, q
′

0, a
′

0, . . . , a
′

M , q′, p′, e′

for B′. Since λ and λω are one-to-one mappings onto the set of states for B′ and

B′

ω, respectively, there is exactly one state s such that (j1) is satisfied and for each

m = 0, . . . ,M there is exactly one state am for Bω such that (j3) is satisfied. The

other elements of the reentry history

s′, ω, p′0, q
′

0, a
′

0, . . . , a
′

M , q′, p′, e′

for B are determined by the definition of a reentry history. It is also clear that (j4)

holds and that there cannot be any other reentry history for B which is parallel

to the reentry history for B′. This completes the proof of the lemma. �

Theorem 10. Let Φ = (Λ,Γ, ρ, α) be a qualitative dynamic system and let RV

be a removable variable for Φ. Then the extended transition diagram of Φ is in-

variant under the elimination of RV . Moreover, the seven stability and instability

properties in Table 45 are invariant under the elimination of RV in Φ.

Proof. In order to prove the invariance of the extended transition diagram of

Φ under the elimination of RV , we have to show that the conditions (i1), (i2), and
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(i3) in the definition of this invariance are satisfied. Condition (i1) is a consequence

of Theorem 9. In view of lemma 38 condition (i2) is satisfied.

Condition (i3) requires that at every stationary state s the result of a pertur-

bance ω ∈ α(s) at s is invariant under the state mapping. By definition this is

the case if E ′(ω, s′) with s′ = λ(s) is the set of all e′ = λ(e) with e ∈ E(ω, s).

In view of lemma 40, for every reentry history in B, we can find a parallel

reentry history in B′. Therefore E ′(ω, s′) contains all e′ = λ(e) with e ∈ E(ω, s).

Since for every reentry history in B′ we can find a parallel reentry history in B,

it also holds that E ′(ω, s′) does not contain any e′ which is not an image of an

e ∈ E(ω, s) under the state mapping. It follows that E ′(ω, s′) is the set of all

e′ = λ(e) with e ∈ E(ω, s). Therefore (i3) is satisfied. Consequently, the extended

transition diagram is invariant under the elimination of RV .

It remains to show that the seven properties of stability and instability in

Table 45 are invariant under the elimination of RV . Consider first the three

properties of ω and s. These properties are defined in terms of the availability

or unavailability of certain kinds of permissible paths in the transition diagram

beginning with a reentry state e ∈ E(ω, s). Destabilizability means that there is

at least one such path with at most one tardy transition which does not lead back

to s. Escapability means that there is at least one such path which never comes

back to s. Unreachability after ω means that every path of this kind never comes

back to s. It can be seen immediately that the invariance of these three properties

under the elimination of RV is a consequence of the invariance of the extended

transition diagram under the elimination of RV .

The other four properties of stability and instability are defined in terms of

the first three properties. Being stable means not being destabilizable by any

ω ∈ α(s) and being instable means not being stable. A repulsor is defined as being

unreachable after every ω ∈ α(s) and a recaptor is defined as not being escapable

by any ω ∈ α(s). Here, too, it can be seen immeditely that the invariance of

each of these four properties under the elimination of RV is a consequence of the

invariance of the extended transition diagram under the elimination of RV . This

completes the proof of the theorem. �

6.11.3. Successive elimination. The invariance of the transition diagram

and the extended transition diagram under the elimination of a removable vari-

able RV facilitates the analysis of qualitative dynamic systems. As far as the

investigation of cycles and properties of stability and instability is concerned a

qualitative dynamic system can be replaced by its reduction after the elimination

of a removable variable. In some cases the number of variables can be reduced
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considerably by the successive elimination of removable variables. This simpli-

fies the determination of a list of all possible states and diminuishes the size of

prestates and the length of readjustment processes.

Just as well as the elimination of one removable variable, the successive elim-

ination of removable variables leaves the transition diagram and the extended

transition essentially unchanged. One can look at a state mapping as the replace-

ment of a longer description of a state by a shorter one. In this sense only the

names of the vertices are changed by the elimination of a removable variable. Oth-

erwise the structure of the transition diagram or an extended transition diagram

remains the same one. This is also true for the end result after the successive

elimination of removable variables.

It has already been pointed out in 6.1 that in the model of Hume’s specie

flow mechanism (see 2.1) the variables DE,PR, IM, and EX can be successively

removed. At the end the base of the system is reduced to the following two

confluences:

∂GO =















− for TR = D

0 for TR = b

+ for TR = S

∂TR = −∂GO

Removable variables may have an important role in the interpretation of a system,

but they are not needed for the analysis.
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